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Introduction

Amongst other behavioral deficits, children afflicted with Autism
Spectrum Disorders (ASDs) present an array of motor skill
impairments [1-3]. These deficits include problems the planning and
performance of goal-directed behaviors [4,5]. Simermeyer and
Ketcham (2015) have studied aspects of motor planning ability in
ASD-diagnosed children (aged 5-13 years) through application of a
method consisting of fine and gross motor tasks and postural
components through altering sensory input [6]. They observed that
ASD children expressed greater variability in hand selection during the
“dial-turning task” and a tendency to plan movements that were not in
accordance with ‘end-state comfort’. These children displayed a
reduced ability to imitate movements correctly, presented lower scores
for both the drawing and stickler tasks, and required longer time to
‘bead the bracelet’ than the comparison control group. The notion of
end-state comfort refers to planning movements that allow individuals
to attain comfort at task completion despite an initial phase of no-
comfort/discomfort [7]. In children presenting normal development, a
near completion of end-state performance is reached by 10 years-of-
age [8]. Thus, the impairments by ASD children described by
Simermeyer and Ketcham (2015) imply a serious disadvantage. The
purpose of this treatise is to examine the notion of physical exercise as
intervention to facilitate a positive developmental trajectory, as has
been observed both under normal conditions and those associated
with developmental disturbance, e.g. ADHD [9-14]. Motor skills
difficulties, such as balance, posture and gait and movement speed, are
present in children diagnosed with ASD [15,16]. Some of the behaviors
associated with ASD stereotypical, repetitive and counterproductive.
Episodes of physical exercise and/or activity were found to reduce the
stereotypies and increase positive behaviors, such as time spent on
tasks [17,18]. Other deficits in ASD involve alterations in the
neurophysiological response to stress, including impairments in heart
rate adaptation to challenges set by attentional demands and social
encounters [19-21]. In circumstances of physical exertion or stress that
occur during exercise it has been observed repeatedly that individuals
(children) presenting ASD generally displayed lowered physiologic,
i.e., heart rate, adaptations [22-24]. Pace and Bricout (2015) have
shown that in comparison with a group of healthy children, a group of
ASD children (aged 10 +1.45 years) evidenced lowered heart rate: at
pre-test, during physical evaluation and at maximal exertion [25]. The
ASD children displayed also a higher number of falls on the balance
test, lower force on the handgrip test, lower levels of performance on
the plate tapping test, vertical and broad jump tests, the Euro fit sit-up
test and the test of reactive speed. They required too a greater length of
time to achieve the motor educational course. They concluded that the
ASD children in the sample may be characterized by motor
impairments, lower daily skills abilities, and deficits in cardiac
adaptation to physical exertion. Nevertheless, the consensus of the
findings implied that physical activity programs initiated early ought

to be maintained into adulthood thereby ensuring against
cardiovascular risks associated with a sedentary lifestyle. Perinatal
administration of the anti-epileptic drug, valproic acid, has been
applied as a neurobehavioral model of autism in rodents [26]. It
induces symptoms of autism that involve social and cognitive deficits
and repetitive behaviors, suppresses the number of BrdU-positive (5-
bromo-2’-deoxyuridine-positive) cells, linked to reelin, in the
hippocampus induced autistic-like behavior in male rats through
administration of valproic acid (400 mg/kg) on postnatal day 14
[27-29]. They were assigned to either exercise or sedentary groups
from postnatal day 28 onwards for four weeks. Treadmill exercise was
maintained five times/week during a 30 min session each day. The
treadmill exercise load was: 1st five-min period at a speed of 2 meters/
min, 2nd five-min period 5 meters/min, and 8 meters/min over the
final 20 min. In tests of social behavior, the heightened aggressive
behavior of valproate-injected rats was reduced by the treadmill
exercise regime concurrent with improved cognitive performance in
an eight-arm, radial arm maze. Postnatal valproic acid reduced reelin,
an extracellular matrix glycoprotein that regulates neuronal migration
and positioning during brain development, in the hippocampus,
whereas, the treadmill running intervention increased reelin
expression in the valproate-treated rats. The utility of animal models
of ASD needs to be exploited more completely since rodents adapt
rapidly to treadmill type running exercise interventions thereby
facilitating the examination of a multiple of symptom phenotypes and
biomarkers of disorder [30]. Despite the promise of exercise
intervention for the alleviation of ASD symptoms, several conditions
require fulfillment for effective improvements to be obtained; these
include:

(i) The notion of individual participation and compliance in
physical exercise programmes.

(ii) The pervading presence of issues concerning balance
impairments which require taylor-made exercise forms, and

(iii) The reality of auditory hypersensitivity which complicates the
choice of exercise regimes.

A paucity of intervention studies have concentrated upon the
notion of ‘individual participation’. Adair et al., (2015) have shown
that individually-tailored, educational and mentoring programmes
enhanced participation outcomes, particularly with regard to exercise
regimes wherein in cases where participation was only a secondary
outcome, little or no effect was registered [31]. Balance deficits are
present in ASD and are exacerbated by alterations of stance yet these
deficits were unrelated to symptom severity when age-of-subject was
taken into account, the complications associated with interventions
are under study [32,33]. Finally, in ASD children, auditory modality
hypersensitivity presents an important feature of disability. The
“listening project protocol” offers a new intervention, a form of ‘neural
exercise’ that applies acoustic stimulation to recruit the neural
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regulation of the middle ear muscles [34]. Listening project protocol
was hypothesized to reduce auditory hypersensitivities by increasing
the neural tone to the middle ear muscles to functionally dampen
competing sounds in frequencies lower than human speech. Their
experimental trials demonstrated that listening project protocol, when
contrasted to control conditions, selectively reduced auditory
hypersensitivities. These findings are consistent with the polyvagal
theory, which emphasizes the role of the middle ear muscles in social
communication.

Despite the established genetic and neuroimmune connections,
environmental factors, such as diet and gastrointestinal complications,
are being taken into account increasingly [35-38]. The notion of
“plural autisms” affecting the expressions of developmental trajectories
focuses attention on influences of diet. For example, it appears that
differing responses to the use of a gluten- and casein-free diet, defined
as best- and non-response, has combined with some progress on
determining the underlying genetic and biological correlates
potentially related to such dietary elements [39]. Currais et al. have
shown that the dietary glycemic index induces a marked impact upon
ASD the phenotype [40]. In BTBR mice, a model of ASD, they found
that the diet modulated plasma metabolites, neuroinflammation, and
brain markers of neurogenesis to mimic the human condition. Puig-
Alcaraz, et al. measured homocysteine, glutathione, methionine, and
3-nitrotyrosine in the urine of ASD children. They observed the
increase in homocysteine was directly related to the severity of the
communication skills deficits but the deficits in socialization skills or
the preponderance of repetitive/restricted behaviors [41]. In an
examination of several elements of dietary supplements in 56% of
children presenting ASD, Stewart et al. found deficiencies in vitamin D
and calcium; supplementation caused excess vitamin A, folate, and
zinc, as well as vitamin C and copper (2–3 years), and manganese and
copper (4–8 years) [42]. Thus, the dangers of dietary supplement
ought to be observed.
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