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Abstract
Wave interaction is addressed the framework of the helicoidal Peyrard-Bishop model of DNA. The model is first 

reduced to a set of coupled nonlinear Schrodinger equations via the multiple scale expansion. Modulational instability 
analysis shows that multi-breather trains exist in large regions of instability, while trains of one-humped breathers 
are observed for the single excitation mode. Analytical solutions are proposed, where single modes are proposed to 
described DNA respiration and coupled waves rather describe the bubbles observed in experiments. These bubbles 
are shown to be more effective under weak helicoidal coupling. The process of strand separation is also discussed. 
PACS number(s): 87.14.E-, 87.15.H-, 05.45.Yv, 05.45.-a
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Introduction
The fundamental role and effects of enzymes in the key processes 

of DNA replication and transcription have been deeply addressed 
during the last ten years. In fact, it is well established nowadays that 
the initiation of DNA transcription is tributary to the synthesis of the 
polymerase-RNA which is known as the main factor contributing to 
break the strong hydrogen bonds linking bases in pairs, for the genetic 
code to be exposed out of the stack. Unlocking the complexity of 
such a phenomenon has then been shown to mainly depend on the 
DNA complex structure, as it requires, among the numerous involved 
degrees of freedom, the unwinding of the double helix. That complexity 
mainly comes from its structure which is primarily made of random 
distributions of four types of bases, adenine (A), thymine (T), cytosine 
(C) and Guanine (G). Besides, the pairing of the bases respects a
universal complementarity where A can bind only to T and C to G. The 
bases are put together by hydrogen bonds, and the AT pair contains two 
H-bonds while the GC pair contains three of them. Among the models 
introduced to describe the dynamics of such a complex molecule, the
Peyrard-Bishop (PB) model [1,2] has been extensively used in the
last ten years because of its capability of predicting the occurrence of
denaturation bubbles as widely observed in experiments where the
so-called first-order phase transition emerges [2,3]. Furthermore,
many studies have been carried out, showing that it support solitonic
structures and is rather suitable to observe the localization of the
energy which drives the key dynamical processes known as replication
and transcription. Over the years, the PB model has been improved
to take into account other features such the helicoidal structure of
DNA [4,5], the cooperativity among adjacent base pairs [6,7] and
the roto-torsional behaviours of the molecule [8-11]. For example,
modifications brought to the PB model have shown new features in the 
way the base pairs oscillate and its modulational instability has been
extensively studied as well [5]. Analytical solutions of the helicoidal PB 
model have been studied [12], but no relationship has been established, 
to our knowledge, between fluctuating bubbles and soliton emergence
in DNA nonlinear models. The main objective of the present work is
therefore to show that wave mixing can has some features of fluctuating 
bubbles and can be used to explain the opening of the DNA double
helix. For this purpose, we use the so-called asymptotic expansion to
derive the amplitude equations of the interacting waves. In fact, we
assume that the RNA-polymerase which breaks H-bonds behaves as
a wave which interacts with breathing modes so that the transcription

bubble emerges. The helicoidal PB model we consider in this work is 
described by the Hamiltonian [4,10].
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While the first term of Eq. (1) represents the kinetic energy, the 
second one stands for the nearest-neighbour stacking energy with 
coupling parameter s. In the helicoidal configuration of the DNA 
chain, nucleotides from different strands and close enough to interact 
via filaments of solvent. Otherwise, the nucleotide n of one strand 
interacts with the nucleotides (n - h) and (n - h) of the other strand. 
This is given by the third term in Hamiltonian (1). Also, the helicoidal 
pitch of DNA being 11 per turn, we consider h=5. S is the helicoidal 
coupling parameter and the on-site potential is the Morse potential 

2( )( ) 1n na u -v
n nV u u D e− − = −  , where D is the dissociation energy and

a parameter homogeneous to the inverse of a length, which sets the 
spatial scale of the potential.

The Hamiltonian (1) gives the equations of motion for un and vn. 
Furthermore, by using the center-of-mass coordinates representing the 
in-phase and the out-of-phase transversal motions, i.e.,

( ) 2 , ( ) 2n n n n n nX u +v Y u - v= =                (2)

it is possible to decouple the two variables un and vn as follows

1 1( 2 ) ( 2 )n n n n n h n h nmX s X X X S X X X = 0+ − + −− + − − + −         (3a)

2 2
1 1( 2 ) ( 2 ) 2 2 ( 1)n n-a Y -a Y

n n n n n h n h nmY s Y Y Y S Y Y Y aDe e = 0+ − + −− + − − + − − −
 (3b)

The first equation admits plane wave solutions and does not really 
interests us as the second one which support localized structures. 
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one can easily get the solution

( ) ( ) ( )(1)
, , ( , ) . .,n ni t i t

n n n nY A e B e c c
+ −

= ξ τ + ξ τ +θ  θ  		              (10)

Where A(ξn, τ) and B(ξn, τ) are envelope functions to be determined 
later, with 

n qnl t+ = −θ ω  and ,n qnl t− = − −θ ω  with ω being
the carrier wave frequency, related to the carrier wavenumber q via

the dispersion relation
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is found and the terms in (2)
,n nY  is given by
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For j=3, the solvability condition leads us to the set of coupled 
equations for the amplitudes A and B as follows

( )
2

2 2
1 2 0

n

A Ai P A B A11 12

∂ ∂
+ + + =

∂τ ∂ξ
η η 		             (14a)

( )
2

2 2
1 2 0,

n

B Bi P A B B21 22

∂ ∂
+ + + =

∂τ ∂ξ
η η

             (14b)

Coming back to original variables, τ=ϵ2t and ξn=ε(nl-µt)=εx, 
imposes us to set (ψ1, ψ2)=ε(A,B), and the set of equations (14) becomes
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The set of equation (15) describes the possibility of wave mixing 
in the helicoidal model of DNA. We should however stress that it is 
nowadays well introduced in the DNA dynamics as clearly discussed by 
Tabi et al. [15,16]. Besides, it also appears in a broad range of physical 
settings such electrical lattices [17], Bose-Einstein condensates [18], 
plasma physics [19], just to cite a few. In electrical transmission lines, 
for example, it has been shown to bring about modulated turbulent 
patterns [20]. In the case of the Peyrard-Bishop model, coupled NLS 
equations have been shown to bring about kink-breather solitonic 
structures with interesting biological implications for the processes of 
DNA breathing [15]. In the meantime, the process of wave mixing has 
not yet been addressed in DNA and could give rise to new features in 
the process of bubble emergence

Modulational instability

The most direct way solitonic structures emerge in nonlinear 
systems is through MI. In order to investigate the possibility of wave 
mixing in the set of Eq. (15), we assume that it admits the plane waves 

We will therefore work with Eq. (3b). The rest of the paper is then 
organized as follows. In section 2, we first use the multiple scaling 
expansion to show that interacting waves can be described via a set 
of coupled nonlinear Schrodinger (NLS) equations and we study 
their modulational instability (MI). We show that the coupling mode 
enlarges the instability domain and therefore brings about new features 
in the bearing of modulated trains of waves in the helicoidal PB model. 
In section 3, we derive solitonic solutions for both for the single and 
coupled modes and we show that the coupled mode gives rise to 
fluctuating bubbles at their interaction point. Concluding remarks end 
the paper.

Amplitude Equations and MI
Amplitude equations

In order to use the multiple-scaling method, we first expand the 
terms in exponential up to the third order, and reduce Eq. (3b) to 

2 2 3
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Investigating the effects of nonlinearity and discreteness through 
the asymptotic expansion imposes us to assume the following quasi-
discreteness approximation [13-15].
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where ϵ is a small, but finite, parameter which stands for 
the relative amplitude of the excitations. In its general form, 

( )(v) (v)
, , , , (t), (t)n n n n n n nY Y + −= ξ τ θ θ where the first and second subscripts n 

represent the variables ξm and (t)n
±θ  respectively. Along the same line, 

the slow variables ξn=ϵ(nl-µt) and τ=ϵ2t are also known as the multiple 
scale variables. µ is a small variable which will be determined by a 
solvability condition. The fast variables (t)n

+θ and (t)n
−θ represent the 

phases of two carrier, but counter-propagating, waves. Considering the 
derivative expansion 
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n
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and taking into account all the above hypotheses, and using the Taylor's 
exapansions
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the problem to solve reduces to the following set of equations
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Where 2 2
1 2 2 gk K= + +ω ω  Solving the above system (8) will be 

performed step by step. For j=1,
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mode is obtained for 12 21 0.= =η η  Uncoupled identical NLS equations 
are then obtained, with the same stability/instability features. On the 
other hand, the coupled mode implies 12 210 0,and≠ ≠η η  and takes 
account of the nonlinear coupling between the two NLS equations. 
Comparing qualitatively these two cases, one sees that coupled modes 
expand the regions of instability and even cover the unstable region 
for the single mode. Also, the growth rate of instability is high for the 
coupled modes. On this basis, we also suspect the unstable modes from 
these two cases to be different. However, this can be verified through 
direct numerical simulations on the generic equation (3b). This has 
been done using the fourth-order Runge-Kutta computation scheme 
on a chain of 350 base pairs with periodic boundary conditions and 
time-step ∆t=10-3 tu. The wavenumber have been fixed as ql=0.28 π 
and λ=0.15 π, values which fall well inside the instability regions of 
the two modes. The corresponding results are given in Figure 2, 
where panel (a) shows the MI features of the single mode and panel 
(b) displays nonlinear oscillations of the coupled mode. In both cases, 
trains of soliton-like structures, with breathing features, are observed. 
Their importance in collecting the energy necessary for the initiation 
of the key precesses of replication and transcription has been discussed 
in many DNA nonlinear models, with suitable biological implications 
[7,10,12]. Indeed, the breaking of the hydrogen bonds starts with slight 
oscillations of the bases and then grow progressively in amplitude under 
the action of RNA-polymerase till the breaking of the hydrogen bond, 
condition for the genetic information to be collected by the messenger-
RNA. This suggest the presence of many modes that contribute to 
collect such an energy, leading to some modification of the way DNA 
strands breathe [21-23]. For example, the single mode here displays 
one-humped oscillatory structures (Figure 2a), while trains of multi-
breather elements correspond to the coupled mode (Figure 2b). Also, 
one can notice that the structures that emerge in the second case are 
highly localized in comparison to the single mode. It is the clear that 
coupled modes could bring about new features in the way hydrogen 
bonds oscillate an therefore need to be regarded in the cases of highly 
localized structures and bubbles.

jiw t
joeψ = ψ  as solutions, where the real constants ωj(j=1,2), and the 

complex amplitudes ψ0,j are related by the equations.
2 2
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The condition for the above system to have nontrivial solutions 
is obtained by setting its determinant to zero, which leads us to the 
following nonlinear dispersion relation:

Ω4-P Ω2+Q=0,					                   (20)

Where
2 22 2 4 2

1 2 1 11 10 2 22 20

2 2 2 22 2 8 6
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Solutions for Eq. (20) can easily be found as

2 2 2 21 14 , 4 ,
2 2

P P Q P P Q+ −
   Ω = + − Ω = − −   

	                 (22)

therefore, for the plane wave solutions to be stable under modulation, 
the conditions P>0, Q>0 and ∆=P2-4Q>0 should be simultaneously 
fulfilled. In other words, when this is effective, the plane waves will be 
expected to spread in the molecule without any change. On the other 
hand, solutions (22) could also be complex and this may deeply depend 
on the sign of the discriminant ∆ On this background, the instability 
is a purely growing mode for ∆>0 and the growth rate of instability ∆ 
can be obtained as 2

−−Ω This growth rate will then be positive if P<0, 
i.e., 2 22 2 4 2

1 2 1 11 10 2 22 20( ) 2( ) 0P P P P+ λ − + λ <η ϕ η ϕ  leading to the condition 
1 11 2 22 0P P+ >η η  for σ to remain positive, with 10 10 .=ϕ ϕ  Accordingly, the 

condition ∆>0 implies Q>0, i.e., 
2 2 2 22 2 8 6

1 2 1 2 2 11 10 1 22 20 1 2 10 20 11 22 12 212 ( 4 ( ) 0P P PP P P PPλ − + λ + − >η ϕ η ϕ ϕ ϕ η η η η  

Since P1=P2, the plane wave solutions will be stable if 11 22 21 22 0− >η η η η  
and unstable if the later is not satisfied. Otherwise, for ∆<0, the growth 
rate of instability is given by 2.= ± ∆σ σ is represented in Figure 1, both 
for the single and coupled modes, versus the perturbation wavenumber 
λ. For the single mode, the region of instability is situated in the interval 
0<λ<0:35π, while for the coupled mode, unstable wave patterns are 
expected to take place in the region 0<λ<0:65 π. To remind, the single 
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Figure 1: Plot of the instability growth rate for the single (red line) and coupled 
(blue line) modes for m=300 amu, s=0.04 eV/Å2, D=0.15 eV, a=6.3 Å-1 and 
S=0.001 eV/Å2.
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Wave Mixing and Bubbles in DNA
The single mode

For the single mode, we assume η12=η21=0 and the system reduces 
to two identical and uncoupled NLS equations. The equation for ψ1 is 
for example given by

2
21 1

1 1 12 0i P
x 11

∂ ∂
+ + =

∂τ ∂
ψ ψ η ψ ψ 			                   (23)

and admits the solution [15,24]
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11

= − +ψ
η

		                (24)

which is the same for the NLS equation in ψ2. The general solution for 
DNA dynamics is then written as

1 1 1 1

2 2 2
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θ

θ
     (25)

where ue stands for the velocity of the envelope. The corresponding 
solution is represented in Figure 3a, and clearly displays a breather 
solution. The same class of solution has already been obtained 
numerically in the previous section, and are found to be robust in 
DNA nonlinear models. Two classes of such waves have been discussed 
already, the ones describing the so-called DNA respiration and those 
related to the eye-like configuration usually observed in thermal 
denaturation experiments [12,25].

The mixed solutions

Solving the set of equations (15) depends on the sign of the 
coefficients [15,26,27]

1 22 2 12 2 11 1 21
1 2

11 22 21 12 11 22 21 12

.P P P Pand− −
∆ = ∆ =

− −
η η η η,

η η η η η η η η
		                (26)

In relation (26), one can notice the presence of the term 
11 22 21 12 0,− >η η η η  which bring together the coupled solution and the MI 

analysis performed in the previous section. Breathing solutions for this 
model are found for ∆1>0 and ∆2>0, and is explicitly given by 
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The corresponding solution is plotted in Figure 3b. In comparison 
to the single mode case, the mixing of the counter propagating waves 
rather gives rise to a perturbed breather-like solution which seems to be 
more localized with noisy-like envelope. Of course, the reader should 
notice that from the beginning we did not include any noise to the 
model, rather these fluctuations in the breather solution are due to wave 
collision, i.e., at the point where the two counter-propagating waves 
mix. However, the features of that solution are expected to change for 
different values of the helicoidal coupling parameters S. This may be 
evident as the unwinding of the double helix implies a decrease of S. It 
was in fact shown that the resonant mode, the one supporting highly 
localized bubbles, is possible only when the helicoidal effects are weak 
[12,25]. Therefore, in the rest of the present work, the effect of small 
helicoidal coupling on the mixed solution is discussed. For S=0.002 
eV/Å2, we have the solution of Figure 4a and for S=0.001 eV/Å2, the 
patterns of Figure 4b are obtained. When the value of S decreases, the 
compression of the hydrogen bonds reduces while the oscillations tend 
to become positive as shown in Figure 4b. We therefore have in mind 
to describe the fluctuating opening of the DNA double helix using the 
found mixed solution whose the features are described above. Under the 
action of RNA-polymerase, the hydrogen bonds linking bases in pairs 
are broken progressively to make the codon readable. The hydrolysis of 
ATP brings about energy that enhances the action of RNA-polymerase 
and therefore contribute to separate the two strands of DNA. In so 
doing, the effect of temperature is no more to be ignored through the 
action of ATP. We have simulated the opening of the molecule using 
solution (27), mainly at the point where the two counter-propagating 
waves collide, in order to picture the way environmental factors 
enhance DNA breathing. One of the waves describes the breathing of 
the double-stranded molecule, while the other stands for the biological 
factors that create and enhance bubbles in DNA. The subsequent 
bubbles are not different from those observed through DNA melting 
experiments. This shows and reinforces the fact that different waves are 
present in the process of DNA dynamics, and some are brought by the 
presence of enzymes around the coding sequences of DNA [28]. We 
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Figure 2: The panels show development of MI in the (a) single (b) coupled modes. The parameters are m=300 amu, s=0.04 eV/Å2, D=0.15 eV, a=6.3 Å-1 and S=0.006 eV/Å2.
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mode has been found to expand the instability region, and numerical 
simulations have displayed trains of one-humped breathers for the 
single mode, and multi-breather trains for the coupled mode. Exact 
solutions have also been investigated for the two cases. Breather-like 
solutions have been found for the single mode, while highly localized 
fluctuating breather solutions have been derived for the mixed mode. 
We have further argued that the release of energy by ATP and the 
effect of RNA-polymerase could be assimilated to waves that collide 
with the weak DNA breathing in order for the molecule to be opened. 
However, recent developments have shown that when the hydrogen 
bond stretching is effective, the solvent molecules present in the 
DNA environment stabilize the molecule in the opened configuration 
[21,29,30] in order to prevent the molecule from re-closing. We should 
therefore modify the present model by taking accounts of these effects 
which could enrich our investigations on the most realistic profile of 
transcription and replication eye-like structures. In the meantime, 
the present work brings about the possible importance of multi-wave 
flowing in DNA double helix.

therefore see how the bubble grows with decreasing S, in a fluctuating 
way, while hydrogen bonds are broken progressively as depicted in 
Figure 5. In Figure 5a, bubbles are created through wave mixing for 
S=0.002 eV/Å2. Progressively, as transcription factors modify the value 
of ξ the hydrogen bonds are broken and finally lead to the fluctuating 
transcription eyelike structure observed in Figure 5b for S=0.001 eV/
Å2. The action of RNA-polymerase through this work can therefore be 
seen as a wave that surfs the DNA helix and mixes with DNA breathing 
waves, a collision which yields fluctuating breather-like structures for 
the genetic code to be read.

Conclusion
Wave interaction in the helicoidal PB model has been addressed in 

this work. Using the multiple scaling expansion, we have shown that 
the dynamics of counter-propagating waves can fully be described via 
a set of coupled NLS equations. MI Has been studied with emphasis on 
the features of single and mixed modes. In that context, the coupled 
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Figure 5: The panels display bubbles formation in DNA due to wave mixing (a) S=0.002 eV/Å2 and (b) S=0.001 eV/Å2. Values of parameters are m=300 amu, s=0.04 
eV/Å2, D=0.05 eV and a=6.3 Å-1.
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