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Introduction
Cancer is a great concern in the public health and development 

of novel therapeutic agent or strategy become urgently. Compared to 
other small organic molecules and protein, anticancer peptides (ACPs) 
have several extraordinary properties, such as small size, high activity, 
low immunogenicity, good biocompatibility, diversity of sequence and 
more modification sites for the functional molecules. Thus, ACPs have 
become promising anticancer drug candidate molecules.

According to the biological effects of ACPs, they can be classified 
into three groups: inhibitory activity, necrosis activity and apoptosis 
activity. For the inhibitor activity, most peptides are cellular adhesion 
molecules such as RGD or YIGSR, etc. and come from the common 
conservative sequence of basement membrane glypeotein of laminin 
and fibronectin, etc. [1,2]. They can target on the integrin receptors on 
the surface of cancer cells and inhibit the migration and metastasis. Thus, 
they can also be used as targeting molecules for drug designing. For the 
necrosis activity, most peptides are membrane activity peptides, such as 
lytic peptide or derived from the antimicrobial peptides (AMPs). In the 
first, they can quickly bind to the highly negative charged cancer cell 
membrane by the electrostatic interactions, then destabilize and disrupt 
the integrity of cell membrane through the hydrophobic interactions 
leading to necrosis of cancer cells [3-5]. For the apoptosis activity, as 
we know, most tumor cells resist apoptosis due to a deregulation of 
pro- and anti-apoptotic proteins, however, partly ACPs can result to the 
releasing of cytochrome c (Cyt c) and lead to the apoptosis of cancer 
cells by the permeation and swelling of mitochondria membrane if 
ACPs internalized inside eukaryotic cells. Briefly, the releasing of Cyt c 
from damaged mitochondria induces Apaf-1 oligomerization, caspase 
9 activation and subsequently the conversion of pro-caspase 3 to 
caspase 3, which is responsible for many of the hallmarks of apoptotic 
symptoms [6-8].

The peptide therapeutics is a promising field against different 
diseases. However, the low stability and short half-life of peptides are 
the major barriers for the application because most peptides are usually 
prone to degradation by various proteases in vivo. In this review, we 
focus on the methods of peptide designing and modification to improve 
the stability, half-life time and specificity of ACPs, which including 
amino acid substitution, cyclization, hybridization, fragementization, 
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Abstract
Cancer is a great concern in the public health and development of novel therapeutic agent or strategy become 

urgently. Anticancer peptides (ACPs) have become promising anticancer drug candidate molecules due to their 
several extraordinary properties, such as small size, high activity, low immunogenicity, good biocompatibility, 
diversity of sequence and more modification sites for the functional molecules. However, the low stability and short 
half-life of peptides are the major barriers for the application. In this review, we focus on the methods of peptide 
design and modification to improve the stability, half-life time and specificity of ACPs, which including amino acid 
substitution, cyclization, hybridization, fragmentization, modification of C- and N-terminal of peptide by polymer or 
targeting molecules, etc.

modification of C- and N-terminal of peptide by polymer or targeting 
molecules, etc. The schematic diagram of major design and modification 
strategies of ACPs are shown in Figure 1.

Design of ACPs

Up to now, more than 2750 AMPs have been found and 199 
peptides exhibited anticancer activities (named ACPs), see the website: 
http://aps.unmc.edu/AP/main.php. Some ACPs come from the AMPs 
and exhibit similar properties, such as net positive charge, amphipathic 
conformation, mechanism, etc. Thus, the method for the design of 
AMP also can be used for the design of ACP, including amino acid 
substitution, cyclization, hybridization, fragementization, etc. Based on 
these methods, the activity, stability of ACP can be improved.

Amino acid substitution

As we know, most anticancer peptides are membrane activity 
peptides, particularly α -helical cationic anticancer peptides and the net 
charge, hydrophobicity and helicity usually affect their activities [9,10]. 
Several researches have been reported that amino acid substitution is 
a useful tool to improve the activity and specificity of ACPs. Amino 
acid substitution cannot only change the biophysical parameter of 
ACP, but also influence the activity and stability of ACP, even alter the 
mechanism of action of ACP. Temproin-1CEa, a naturally occured 
α-helical cationic antimicrobial peptide, exhibits a potent anticancer 
activity and a moderate hemolytic activity [11,12]. Yang et al. designed 
and synthesized six analogs of temporin-1CEa by reserving the 
amphipathicity levels and α-helical structural patterns, while changing 
their cationic property and hydrophobicity. The results indicated that 

http://aps.unmc.edu/AP/main.php
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increasing the cationicity while reserving the moderate hydrophobicity 
may be a strategy to improve the cytotoxicity against tumor cells and 
decrease the hemolytic activity [13]. Similarly, Alyteserin-2a, is an 
amphipathic α-helical cationic cell-penetrating peptide, which displays 
relatively low cytotoxic potency against A549 human non-small cell 
lung adenocarcinoma cells and low hemolytic activity against human 
erythrocytes [14]. Several alyteserin-2a analogs were designed, in 
which amino acids on the hydrophobic face of the helix were replaced 
by L-tryptophan and amino acids on the hydrophilic face were replaced 
by one or more L-lysine or D-lysine residues. The Trp-containing 
peptides display an increasing of cytotoxicity against tumor cells, but 
the hemolytic activity against human erythrocytes also increase in 
parallel [15].

A 26-residues amphipathic peptide of V13K can adapt to α-helical 
conformation in the hydrophobic environment [16]. In order to 
increase the hydrophobicity of V13K, we designed single Leu-
substituted peptides A12L, A20L, double Leu-substituted peptides 
A12L/A20L and triple ones A12L/A20L/A23L by replacing alanine to 
leucine at corresponding position. Among of them, peptide of A12L/
A20L showed the strongest activity against HeLa cell line. Our data’s 
suggested that the hydrophobicity of peptide plays a crucial role in the 
action against cancer cells due to the necrotic-like membrane disruption 
mechanism [3]. In addition, helicity was systematically modulated by 
introducing D-amino acids to replace the original L-amino acids on 
the non-polar face or the polar face of the helix and the therapeutic 
index of A12L/A20L against HeLa cells was improved by 9-fold and 
22-fold, respectively [17]. These data’s noted us needing to consider the 
balance of anticancer activity and hemolytic activity by modulation 
the hydrophobicity and helicity for the designing and modification of 
ACPs.

Due to the proteolytic degradation of nature peptide, D-amino acids 
substitution is a useful method to overcome this limitation and enhance 
peptide stability. NRC-03, acationic anticancer peptide from winter 
flounder, can cause the lysis of breast cancer and multiple myeloma cells 
and NRC-03-mediated cell death correlated with peptide binding to 
anionic molecules of cellular surface [18-20]. However, the effect may 
be limited because of its susceptibility to proteases. Hilchie et al. [19] 
designed a analog of NRC-03 by replacing all the original amino acids 

with the corresponding D-amino acids, named [D]-NRC-03, which 
exhibited higher anticancer activity than NRC-03 due to the stability 
against human serum or trypsin [21]. Except D-amino acid, other 
unnatural amino acids also have been used to modify the anticancer 
peptide to increase their stability or bioactivity [22-24]. Anticancer 
peptide of 

D
(KLAKLAK)

2 is a well-known pro-apoptotic peptide that 
locate to mitochondria and disrupt this organelle, also named 

D
(KLA)

2 
or kla [25]. Horton designed a serious of analogues by exchanging the 
leucine residue with three different amino acids: phenylalanine (F), 
cyclohexyl-alanine (FX) or 6-carbon alkyl chain residue (Hex). The 
data showed that engineered peptides exhibit more toxicity than the 
parent compound against a wide variety of cancer cell lines, while their 
cell-type specificity are remained [26-28].

Besides affecting the activity and stability, amino acid substitutions 
may even alter the mechanism of action of anticancer peptides. Zhou et 
al. designed a mutant ZXR-2 (FKIGGFIKKLWRSLLA) based on ZXR-
1(FKIGGFIKKLWRSKLA) by replacing Lys to Leu at the 14th position. 
ZXR-1 is an anticancer peptide derived from a known anticancer 
peptide mauriporin [29]. It is interesting that ZXR-2 exhibits anticancer 
activity, but the mechanism is completely different. Briefly, ZXR-1 is 
a pro-apoptotic peptide, it can translocate into cells and target on the 
mitochondria, then induce cell apoptosis, while ZXR-2 is a lytic peptide 
that directly targets on the cell membranes and causes membrane lysis.

Fragmentization

Fragmentization is a strategy to obtain short bioactivity peptide 
from the bioactivity proteins or the long and complex bioactive 
peptides. Short peptide has several advantages such as low immunity, 
easy synthesis, low cost, etc. Here, we divide the fragmentization 
method into two different types.

The first type is the bioactivity peptide coming from a bioactive 
protein. For example HPRP-A1 is derived from the N-terminus of 
ribosomal protein L1 of Helicobacter pylori and exhibited a broad 
spectrum anticancer activity [30]. AFP is a safe, naturally occurs 
human protein produced during pregnancy, which has anti-estrogenic 
and anti-breast cancer activity [31]. The oncostatic activity is localized 
to an eight amino acid sequence (amino acids 472–479) in domain 
IIIB. Based on this, a linear peptide of EMTPVNPG was synthesized 
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Figure 1: The schematic diagram of design and modification strategies of ACPs.
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[32] and then a series of analogues were designed. Among them, the 
activity of cyclo[EMTOVNOGQ] had been proved [33]. BH3 proteins 
promote apoptosis through anti-sequestration or direct activation of 
apoptosis effectors [34,35]. Liu et al. designed an artificial 18-mer BCL-
2 homology 3 peptide (ABH3) via charge tuning and conformation 
constraining based on original BH3 sequence. The data indicated that 
it induces cell death in an apoptosis-independent manner through the 
lytic properties of the peptide that causes disruption of cell membrane 
[36].

The second type is truncation from the long and complex bioactive 
peptides [37]. Buforin IIb (RAGLQFPVG[RLLR]3), a histone H2A-
derived peptide, has strong cell penetrating ability and anticancer 
activity against various cancer cell lines but also showed cytotoxicity 
against normal cells at high concentrations [38]. By stepwise elimination 
of the C-terminal regular α-helical motif RLLR repeats motif of 
buforin IIb, Lim et al. designed several peptides consisted of different 
numbers of motif RLLR and named BR1 (RAGLQFPVGRLLR) and 
BR2 (RAGLQFPVGRLLRRLLR). The data indicated that BR2 can 
efficiently internalize into various cancer cell lines without cytotoxicity 
against normal cells [39]. Cecropin B is an amphipathic polycationic 
peptide; the signal sequence is located at N-terminus [40]. CB1a was 
constructed by repeating the N-terminal ten amino acids of CB three 
times and including a hinge near C-terminus. Compared to CB, CB1a 
has been demonstrated promising activity against several cancer cells 
but low toxicity against non-cancer cells and has become a promising 
anticancer agent [41].

Hybridization

Peptide-peptide hybrid is an important strategy for the modification 
of ACPs. In the design of AMPs, hybridization is a very common method 
to improve the activity, reduce the toxicity, etc. [42,43]. In the design of 
ACPs, most hybrid peptides usually combine cell penetrating peptide 
or targeting peptide with a lytic peptide or pro-apoptotic peptide, to 
improve the activity, stability or selectivity of ACP. Here we focus on the 
modification of cell penetrating peptide, the modification of targeting 
peptide will be reviewed in next part of targeting modification.

In our previously study, we constructed of a new hybrid peptide, 
HPRP-A1-TAT(FKKLKKLFSKLWNWKRKKRRQRRR), comprising 
the cell-permeating peptide TAT(RKKRRQRRR) [44] linked to the 
C-terminus of HPRP-A1(FKKLKKLFSKLWNWK). Compared to 
HPRP-A1, HPRP-A1-TAT exhibited stronger anticancer activity 
and higher therapeutic index [30]. It is interesting that the cellular 
concentration of HPRP-A1-TAT was higher than that of HPRP-A1 
after 24 h incubation with HeLa cells. We suggested that TAT protects 
HPRP-A1 against degradation, maybe attribute to its high number 
of positively charged amino acids or the further release of peptides 
into cancer cells from endocytotic vesicles [30]. Another example of 
hybrid peptide is r7-kla (D forms). Benedict Law et al. incorporated 
the mitochondrial membrane disrupting peptide of kla with a cell-
penetrating domain of r7. As we know, kla cannot easily penetrate 
through the cell membrane, r7 as a delivery vector can increase the 
membrane-crossing ability of kla. Thus, the hybrid peptide of r7-kla 
showed stronger cellular uptake rate and stability due to the resistant 
ability to protease digestion and resulted to more cells apoptosis [45].

In addition, the hybrid peptide has also been applied in intravital 
imaging. Ts (SKKPVPIIY CNRRSGKCQRM) is a mammalian free cell 
membrane-penetrating peptide [46] and Pc1 (CIRTPKISKPIKFELSG) 
is a αvβ3-binding peptide [47]. Yan et al. linked Ts to Pc1, and created 
a hybrid peptide, PTS. Then the hybrid was labeled with an FITC 

or Cy5.5 as an imaging indicator to evaluate its in vitro and in vivo 
bioactivity [48].

Except the cell penetrating peptides modification, the hybrid of 
different AMPs also has been reported. Cecropin A-magainin 2 and 
cecropin A-melittin hybrid peptides also have been designed and 
synthesized by Shin and examined the relationships between structure 
and biological activity [42]. The results suggested that hybridization is 
a useful method for the design of ACP and the activity of ACP is closed 
to the structure.

Cyclization

Besides enhancing the biological stability of peptides, cyclization 
can also stabilize the conformation suitable for better binding to other 
sites and improved biological activity of ACPs [49,50]. There are two 
main forms of peptide cyclization, cyclization by the formation of the 
amide bond between the N-terminal and the C-terminal amino acid 
residues and cyclizations involving the side chains of individual amino 
acids [51,52].

Cyclization by the formation of amid bond between the N-terminal 
and C-terminal amino acids can be also called head-to-tail cyclization 
[51] or backbone to backbone cyclization [52]. Tørfoss et al. discovered 
a series of synthetic anticancer heptapeptides (H-KKWβ2,2WKK-NH2) 
containing a central achiral and lipophilic β2,2-amino acid, which showed 
high proteolytic stability but low toxicity against normal cells [53]. 
They further prepared a series of seven to five residue cyclic peptides 
containing the two most promising β2,2-amino acid derivatives as part 
of the central lipophilic core and proved that a considerable increase 
in anticancer potency following head-to-tail peptide cyclization [54].

Conotoxins are disulfide-rich peptides from the venoms of marine 
cone snail. Some kind of conotoxins can specifically target different 
subtypes of nicotinic acetylcholine receptors [55] and have very 
promising anticancer potential [56]. However, they are susceptibility to 
degradation by proteases. Clark et al. used (Native chemical ligation) 
NCL to synthesize a range of cyclic conotoxin analogues for evaluation 
as potential drug leads [57].

TAT is a well-known cell-penetrating peptide. Oh et al. [58] 
compared the activities and conformations between cyclic TAT 
and linear TAT. They found that cyclic TAT transduces with higher 
efficiency than linear TAT and the guanidinium groups are more 
distant in cyclic TAT meanwhile guanidinium group separation 
enhances uptake kinetics [59]. Conibear et al. examined three different 
cyclization approaches using a tumor homing peptide epitope of LyP1 
by replacing the disulfide bond with a stable triazole or fluorobenzene 
ring or grafting it into a h-defensin or cyclotide scaffold. Although 
these analogs are not as active as expected, but their study highlights 
the potential of the cyclic cystine ladder and cyclic cystine knotmotifs 
as stable and versatile peptide scaffolds [60].

Modification Strategy
Targeting modification

Based on the combine peptide library and phage display technology, 
hundreds of targeting peptides have been identified to specifically 
distinguish many types of cancer cells and tumor angiogenesis, 
named Tumor Homing Peptide (THP). These THPs can also be used 
to delivery chemical agents to the cancer site while with low affinity 
against the normal cells [61]. Here, we divide the THPs into three 
different types. The first one, the THPs are tumor specific tumor 
homing peptides, such as TCP-1, it can specifically target towards the 
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vasculature of orthotropic colorectal cancer [62]. The secondly one, the 
THPs are tumor independent tumor homing peptides, such as RGD- 
4C, NGR, Lyp-1, TMTP1, etc., they can target to the common antigenic 
markers with broad spectrum [63]. The thirdly one, the THPs not only 
have homing capability, but also have cell penetrating ability, therefore 
they can deliver the drug into the depth of tumor tissue, for example, 
iRGD [64]. As shown above, anticancer peptides (ACPs) are potential 
candidate drug for cancer treatment, but the drawback of less selectivity 
toward tumor cells is still the major challenge for clinical use [65]. Based 
on this problem, many researches have been done by conjugating a THP 
on the N-terminal or C-terminal of peptide to increase the specificity of 
ACPs [63], including pro-apoptotic peptide D(KLA)2, Tachyplesin and 
ATAP, etc. and membrane activity peptide, such as Magainin 2(MG2). 
In this way, the THP mainly can improve the specificity of ACPs against 
cancer cell lines and reduce the toxicity of ACPs against normal cells.

RGD

The first isolated THP was RGD (Arg-Gly-Asp) peptide, which 
was identified by in vivo phage display in tumor bearing mice in 
1997. The RGD peptide has high affinity to the alpha v integrin’s when 
intravenously injected into tumor-bearing mice [66]. Based on the 
peptide of RGD, a targeting hybrid peptide was synthesized which 
compose a RGD and an anticancer peptide of Tachyplesin, which 
is present in leukocytes of the horseshoe crab. The results in vitro 
showed that RGD-tachyplesin can inhibite the proliferation of both 
cultured tumor and endothelial cells and reduce the colony formation 
of TSU prostate cancer cells. Meanwhile, RGD-tachyplesin can induce 
apoptosis through both mitochondrial and Fas-dependent pathways. 
The studies in vivo also indicated that the RGD-tachyplesin can inhibit 
the growth of tumors on the chorioallantoic membranes of chicken 
embryos and in syngenic mice [67].

NGR

Ellerby et al. [68] also synthesized both CNGRC and ACDCRGDCFC 
(RGD-4C) conjugated with pro-apoptotic peptide of D(KLA)2. The two 
homing peptide CNGRC and RGD-4C guided the peptide targeting to 
cancer cell and internalization. Then the peptide of D(KLA)2, can induce 
apoptosis by disruption of mitochondrial membranes. Smolarczyk et 
al. [69] also examined the therapeutic effect of peptide RGD-4C-GG- 
D(KLA)2. The results indicated that the peptide can induce apoptosis 
in B16 (F10) cell line in vitro and inhibit the tumor growth in vivo by 
intratumoral administration. It is interesting that the tumor growth is 
faster and the animals die off after the administration termination.

iRGD

Sugahara et al. identified a novel tumor-penetrating peptide of 
iRGD (CRGDK/RGPD/EC) [64]. iRGD contains an internalizing RGD 
sequence, which can bind to αv integrins that are specifically expressed 
on the endothelium cells of tumor vessels. Then it can be proteolytically 
cleaved to expose the CRGDK/R sequence on the C-terminal, named 
C-end Rule (CendR) motif (R/KXXR/K), which has the high affinity 
to the receptor of neuropilin-1 (NRP-1) and triggers tissue penetration 
[70]. iRGD has been extensively used as a targeting delivery and 
penetration tools for nanoparticles [71], peptides [72], monoclonal 
antibody [73], etc., by chemical conjugated or co-administration [70]. 
iRGD is one of the most widely used THPs to modify many kind of 
ACPs, like apoptotic peptide D(KLA)2, ATAP, CDD, Thymopentin, TP5, 
etc.

ATAP derived from Bfl-1, is an amphipathic α-helix peptide. It 
can target on mitochondria and induce caspase-dependent apoptosis 

[74]. De [72] conjugated the iRGD sequence of CRGDKGPDC to 
the carboxyl-terminal of ATAP and the results indicated that ATAP-
iRGD can penetrate into cancer cells and distribute the mitochondria 
network. Meanwhile, the peptide of ATAP-iRGD can also induce 
apoptosis through release of Cyt c on DU145 cells. In addition, ATAP-
iRGD-M8 also suppressed tumor growth on DU 145 and PC-3 prostatic 
cancer xenograft model by intravenous administration.

Wang et al. also modified a variant of D(KLAKLA)2 to 
D(KLAKLAKKLAKLA)LK, named m(KLA) by iRGD. As we know, the 
-D(A)K- amino acid bond is a unique substrate of Cathepsin B (CTSB), 
which is overexpressed in the cytoplasm of tumors and in human 
tumor-associated cells [76]. The confocal microscope results indicated 
that iRGD can guide m(KLA) enter into the αvβ3 and NRP1 positive 
cells, such as MDA-MB-231, SKBR3 and 4T1 after administrated for 2 
h and induce apoptosis through both mitochondrial pathway and the 
death receptor pathway, whereas it cannot enter into the NRP1-negative 
B16 cells. Furthermore, m(KLA)-iRGD spread extensively within the 
tumor tissue when it was injected into 4T1 tumor bearing mice. The 
m(KLA)-iRGD peptide reduction in tumor volume (P<0.05) and the 
total inhibition of metastasis at the end of the treatment [75].

Thymopoietin pentapeptide (Thymopentin, TP5), is an active 
fragment of thymopoietin (residues 32-36, Arg-Lys-Asp-Val-Tyr) [77] 
and has been widely used as immunomodulatory for treating immune 
deficiency, cancer and infectious diseases. However, poor penetration 
into tumors limits the clinical use of TP5. In order to overcome this 
drawback, a homing peptide iRGD was introduced with the C-terminal 
of TP5 to form TP5-iRGD by Lao et al. [78]. The MTT result showed 
that TP5-iRGD exhibited high inhibition of cell growth activity against 
B16F10, MCF-7 and H460 cell line. Meanwhile, the test in vivo on B16 
xenograft model also indicated that the TP5-iRGD can significantly 
inhibit the tumor growth than TP5.

Bit1is a 179-amino acid residues protein. Its C-terminus constitutes 
the catalytic domain and the N-terminus serves as a mitochondrial 
localization signal [79,80] and the N-terminal domain has been 
reported with apoptotic activity and defined cell death domain (CDD). 
A recombinant protein of iRGD-CDD has been also indicated to trigger 
the tumor cell death both in cultured tumor cell and the xenograft 
breast tumor in mice. Repeated treatment with iRGD-CDD strongly 
inhibited tumor growth, resulting in an average reduction of 77% in 
tumor volume [81].

T3

Lactaptin, which is a proteolytic fragment of human kappa-casein 
(residues 57–134) was found in human breast milk. It has been reported 
that lactaptin has the ability of reducing cell viability and inducing 
apoptosis in cultured tumor cells [82]. RL2 is the recombinant analogue 
of lactaptin that has the activity of inducing different of human cancer 
cells, such as MCF-7, MDA-MB-231, A549, HEP-2 and HA1 [83]. More 
efforts have been made to obtain the targeting properties of lactaptin. 
Recently, Nemudraya et al. [84] reported that two targeting peptides of 
T3(YTYDPWLIFPAN) and iRGD had the specificity for cancer cell and 
penetration to targeted cancer cell and tumor tissue. They were used 
to construct the fusion proteins T3-RL2, RL-iRGD-His and RL2-iRGD 
and evaluate the activity both in vitro and in vivo. The results in vitro 
showed that the fusion proteins exhibited higher activity than RL2 in 
MDA-MB-231 and MCF-7 cell lines. The data in vivo also indicated that 
T3-RL2 protein significantly inhibit tumor growth in a MDA-MB-231 
xenograft model compared with RL2.
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IL-4Rα ligand

High-affinity interleukin-4 receptor α(IL-4Rα) is highly 
expressed on the cell surface of various human solid tumors, for 
example renal cell carcinoma, melanoma, breast carcinoma, ovarian 
carcinoma, glioblastoma, AIDS-related Kaposi’s sarcoma and head 
and neck squamous cell carcinoma [85-90]. Recently, a hybrid 
peptide of IL-4Rα-lytic peptide	 containing a target peptide	
targeted	 to IL-4Rα(KQLIRFLKRLDRNG) and a lytic peptide of 
KLLLKLLKKLLKLLKKK-OH (bold letters are D-amino acids) has 
been designed by Yang et al. [91]. The data indicated that the expression 
levels of IL4Ra in cells were correlated well with IC50 ratio of lytic 
peptide to IL-4Rα–lytic peptide.

The authors suggested that the increasing of cytotoxic activity can 
be attributed to the targeting (IL-4Rα) moiety of hybrid peptide. The 
results in vivo also indicate that the IL-4Rα–lytic hybrid peptide can 
selectively target to cancer cells and inhibit the tumor growth in the 
BXPC-3 and MDA-MB-231 xenograft model.

z13

An endometriosis targeting peptide of z13, which displayed the 
sequence VRRADNRPG, was from T7 phage-based library. z13 can 
strongly bind with the targeted protein CNGB3 in endometriosis. 
Sugihara et al. [92] linked z13 to an 18-mer pro-apoptotic peptide, 
KLAKLAKKLAKLAKKLAK, abbreviated dKLAK (D forms) or a 
variant peptide of HLAH by replacing lysine with histidine to form 
hybrid peptide of dKLAK-z13 or HLAH-z13, respectively. The effects 
of mixture of dKLAK-z13 and HLAH-z13 peptides on baboon 
endometriosis models in vivo by co-administered were investigated. The 
results indicated that cells in lesions selectively underwent apoptosis 
with no effect on neighboring organs and presented a strategy that 
could be useful to treat peritoneal endometriosis in humans.

EGFR ligand

Oesophageal squamous cell carcinoma (OSCC) is a major 
histologic type of oesophageal cancer [93] and the key therapy against 
advanced or metastatic OSCC is chemotherapy [94,95]. Epidermal 
growth factor receptor (EGFR) is over expressed in OSCC tissues about 
71%-88% [96]. Recently, a hybrid peptide as a new agent of EGFR- 
targeting therapy was designed and synthesized, which contains an 
EGFR-targeting peptide of YHWYGYTPQNVI and a lytic peptide 
of KLLLKLLKKLLKLLKKK-OH (bold letters are D-amino acids) 
[97]. The hybrid peptide could kill EGFR-expressing cells through the 
combined process of specific binding to EGFR on the cell surface and 
subsequently disintegrate cell membranes.

TCP-1

TCP-1 (CTPSPFSHC) is a peptide that could target the vasculature 
of orthotropic colorectal cancer identified by the in vivo phage display 
technology [62]. The data demonstrated that TCP-1 also recognizes the 
blood vessels of human colorectal cancer and can be used to deliver 
fluorescein and the pro-apoptotic peptide. Li et al. [62] conjugated TCP-
1 to the N-terminal of the pro-apoptosis of D(KLA)2 with the double 
glycine as linker. The results showed that the TCP-1 peptide can guide 
D(KLA)2 entering into the cancer cell and inducing apoptosis through 
caspase 3 pathway both by chemical conjugate and uncoupled mixture.

TMTP-1

A 5-amino acid residues peptide of TMTP1 has been reported that 
it can bind to a series of highly metastatic cancer cell lines both in vitro 

and in vivo, particularly those from atypical liver micrometasteses that 
contained small number of neoplastic cells [98]. Ma et al. [99] coupled 
TMTP1 to the pro-apoptosis peptide D(KLA)2 and named as TMTP-1-
DKK. The data in vitro indicated that TMTP1-DKK could trigger rapid 
apoptosis in human prostate and gastric cancer cells through both the 
mitochondrial- induced apoptosis pathway and the death receptor 
pathway. Furthermore, direct injection of TMTP1-DKK into mice 
with prostate and gastric xenograft cancers also resulted in decreasing 
of tumor volumes and a significant delay in tumor progression and 
metastasis in vivo [99].

BRBP1

A linear dodecapeptide peptide of BRBP1 (MYPWTEPSYLSN) 
was identified through random peptide phage display bio-panning 
and can against preferentially bind to the human “brain-seeking” 
breast carcinoma cells (231-BR cells) in a concentration- dependent 
and energy dependent manner in vitro [100]. Fu et al. [101] designed 
and synthesized a new hybrid peptide of BRBP1-TAT-KLA, which 
containing three elements: a brain metastatic breast carcinoma cell 
(231-BR)-binding peptide BRBP1, a cell penetrating peptide TAT and 
a pro-apoptotic peptide KLA. In their study, the antitumor activity of 
BRBP1-TAT-KLA on brain metastatic breast cancer both in vitro and 
in vivo was evaluated. And the results in vitro showed that the peptide 
of BRBP1- TAT-KLA efficiently internalized in 231-BR cells and 
consequently induced the membrane damage of mitochondrial and 
cellular apoptosis, significantly decreased cell viability and increased 
apoptotic ability. The results in vivo also demonstrated that BRBP1-
TAT-KLA selectively homed to the tumors and induced cellular 
apoptosis, significantly delayed tumor growth and enhanced antitumor 
selectivity while without significant toxicity on non-tumor tissues.

Bld-1

A Bld-1 peptide of CSNRDARRC, which binds to bladder tumor 
cell, has been identified by phage display [102]. Jung et al. combined 
the tumor targeting peptide Bld-1 with a pro-apoptosis D(KLA)2 and 
formed a hybrid peptide of Bld-1-kla. The hybrid peptide of Bld-1-
kla can selectively bind to HT1376 bladder tumor cells and efficiently 
internalize into cells but not to other tumors or normal cells, exhibiting 
higher apoptotic ability than Bld-1 or kla alone. It is interesting that 
the binding and cytotoxicity of Bld-1-kla was inhibited when pretreated 
HT1376 cells with Bld-1. The data of confocal microscope showed the 
peptide localized in the mitochondrial. The test in vivo on tumor-
bearing mice got the same results that the peptide of Bld-1-kla induced 
apoptosis of tumor cells and inhibited tumor growth more efficiently 
than the peptide of kla [103].

LTV, GR and Bombesin

Based on phage peptide libraries, many other cancer-cell targeting 
peptides have been identified and used for the diagnosis and treatment 
of tumors. The LTVSPWY peptide (LTV peptide) is a targeting peptide. 
It can deliver antisense oligonucleotides and small molecules to cancer 
cells in vitro [104,105]. Furthermore, various fusion proteins carrying the 
LTV peptide have been designed to target cancer cells in vitro and in vivo 
[106]. A gastrin-releasing peptide (GNHWAVGHLM, GR peptide) also 
is a targeting moiety, whose receptor is expressed by most cancer types, 
including breast, ovarian, prostate and lung cancer [107,108]. Bombesin 
is a 14-amino acid tumor homing peptide isolated from frog skin [109]. 
Its receptors are overexpressed in a variety of common human cancers, 
such as neuroblastoma and small cell lung cancer, as well as cancers of the 
prostate, kidney, uterus, ovary, breast, pancreas, gastrointestinal tract, head 
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and neck, and esophagus [110]. Liu et al. [111] reported that by attaching 
magainin 2(MG2) to the N-terminus of Bombesin, the anticancer effect 
of the hybrid peptide of MG2B increase 10 times over than unconjugated 
MG2 in vitro. While MG2B also exhibited higher antitumor effects in mice 
bearing MCF-7 tumor grafts [111].

As shown above, THPs can increase the anticancer activity and 
selectivity of the ACPs while without change the secondary structure 
or charges, some of them can help more ACPs enter into the cancer 
cells and induce cell apoptosis through interrupting mitochondrial 
membranes. These results suggested that chemically coupled of targeting 
peptide with the pro-apoptosis peptide or others anticancer drugs is 
a promising therapeutic strategy for targeted therapy of cancers. We 
believe that the targeting modification of ACPs will be having a very 
beautiful future in clinical use. The targeting modifications of ACPs are 
listed in Table 1.

Polymer modification

Polymer is consisting of one or several units, having high molecular 
weight connected by covalent bond. Polymer generally possesses some 
special characteristics, such as negligible toxicity, high biocompatibility 
and strong degradability. Many polymers have been used in drug 
delivery system to improve the stability and solubility of the drug, for 
example, PEG, carboxymethyl dextran (CMD), PLLA, etc. In addition, 
polymer modification also can used to design prodrug system.

Among all the kinds of polymers used for the modification of 
anticancer peptide, PEG was studied most frequently and thoroughly. It 
has been approved safety by FDA for food, drug delivery vehicle [112-
115]. PEGylated protein and peptide have many advantages, such as the 
hydrophilic characteristic of PEG moiety enabling to increase the ability of 
ACPs to escape from degradation of blood serum protein and making the 
peptides obtained larger molecular weight. In this part, several strategies 
for the modification of ACPs have been reviewed as follow:

The PEGylation of ACPs

PEGylated ACPs was first reported by Kawasaki [116]. In this study, 

a laminin related peptides of YIGSR was conjugated to PEG and formed 
YIGSRG-[amino-poly(ethylene glycol)] hybrid molecule. It showed a 
better stability and resistance to blood serum in vivo and exhibited 
the most potent inhibitory effect on the metastasis of B16 melanoma 
BL6. Then, Kawasaki [117] developed two novel different methods to 
conjugate PEG to ACPs which the NH2-PEG and COOH-PEG were 
successfully synthesized and attached to the amino or carboxyl groups 
of peptide, respectively. Then, NH2-PEG-COOH was also synthesized 
by Maeda’s [118-120] and introduced into SPPS, just like an ordinary 
amino acids. A bifunctional PEG polymer of PDSGR-aaPEG-YIGSR 
was built combining PDSGR and YIGSR together and exhibited higher 
inhibiting effect of tumor metastasis.

Similarly, Brinckerhoff et al. [121] also reported the PEGlytion of 
anticancer peptide MART - 1. It is predicted that immunogenic tumor 
peptides would have short half life time in vivo due to the degradation 
of peptidases in plasma. However, when an amino-PEG was attached 
to the C terminal of MART - 1 to form a MART-1 PEG hybrid, the 
stability of MART-1 was markedly prolonged; the immunogenicity of 
these peptides might also be enhanced by creating modifications that 
enhance stability.

Nisin is an amphiphylic peptide with 34 amino acid residues 
belonging to the family of lantibiotics and exhibites anticancer 
activity [122,123]. Guiotto et al. [124] reported that nisin with 
several shortcomings, including its low solubility in neutral aqueous 
solutions, instability at physiological pH and rapid breakdown by 
proteolytic enzymes. The PEG-nisin conjugate could protect nisin from 
degradation of enzymes and improve its solubility.

It must be noted that high molecular weight PEG moiety leads to 
a decrease of anticancer activity of peptide-PEG block polymer as the 
stability increase. For this reason, ACPs modified by short PEG chains 
was synthesized by Zhang et al. [125]. The studies in vivo and in vitro 
indicated that PEGylated peptide by short PEG chains exhibited a 
prolonged circulating life times in plasma without losing of bioactivity. 
Except the linear PEG, the branched PEG was also employed for 
the PEGylation of ACPs. Alpha-momorcharin (α-MMC), from a 

Homing peptide Anticancer Peptide Cancer Type Reference

RGD Tachyplesin
TSU prostatic cancer
B16 melanoma tumor [66,67]

RGD D(KLA)2 MDA-MB-435 tumor [68]
RGD-4C D(KLA)2 B16F10 melanoma tumor [69]

iRGD ATAP DU145, PC-3 [72,74]

iRGD m(KLA) MDA-MB-231, SKBR3, and
4T1 breast tumor [75,76]

iRGD TP5 B16F10 melanoma tumor [77,78]
iRGD CDD MCF- 10CA1a, 4T1 tumor [79-81]

T3 RL2 MDA-MB-231, MCF-7 [82-84]

IL-4Rα ligand
KQLIRFLKRLDRNG D(KLA)2 BXPC-3 and MDA-MB-231 [91]

z13 dKLAK baboon endometriosis models [92]

EGFR ligand YHWYGYTPQNVI KLLLKLLKKLLK
LLKKK-OH human K-ras mutation negative and positive cancers [94,95]

TCP-1 D(KLA)2 Orthotopic Colorectal cancer [62]

TMTP-1 D(KLA)2 PC-3M-1E8 prostate and MKN-45sci gastric [98,99]
BRBP-1 D(KLA)2 231-BR brain metastatic breast cancer [100,101]

Bld-1 D(KLA)2 HT1376 bladder tumor [102,103]
LTV&GR D(KLA)2 MCF-7 and MDA-MB-231 [104-106]
Bombesin magainin II MCF-7 [111]

Table 1: The list of targeting modification of ACPs.
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ribosome-inactivating protein (RIP) exhibited excellent cytotoxicity 
against tumor cells and strong immunogenicity and short half-life 
time in plasma. Bian et al. [126] synthesized PEGylated-α-MMC using 
a branched mPEG. The results indicated that the complex preserved 
moderate anticancer activity and a longer circulation time with 36% 
acute toxicity and at most 66% immunogenicity decrease.

Although PEGlation of anti-tumor peptide has been widely 
regarded as an effective method to enhance it stability and solubility, the 
specific mechanism of PEGlation is still unknown. Towards this goal, 
Kaneda et al. [127] studied the mechanism of PEGlation; they supposed 
that the improvement of anticancer activity of peptide can attribute to 
the prolongation of the half-life time of peptide in the blood. 

Imura et al. [128,129] also investigated the biological activity of 
PEGylated tachayplesin 1, a membrane- acting β-sheet cyclic anticancer 
peptide. The results demonstrated that the PEGylation of tachayplesin 
1 decreased the activity and the cytotoxicity in vitro and increased 
the specificity of peptide. It is interesting that compared with free 
peptide; PEGylation did not alter the basic mechanism of membrane-
permeabilizing. Furthermore, Imura and coworkers got the similarly 
results when they alter the β-sheet peptide of tachayplesin 1 to α-helical 
ACPs of magainin 2. These data also provide some useful information 
for the peptide designing, particularly for the design of prodrug.

Other polymers modification

 Except the PEG, other ploymers also were used to modify the ACPs 
to improve the activity, stability and specificity, for example, Dextran, 
SMA, PVP, etc. In addition, several polymers have been used in peptide 
targeting delivery and controlled releasing research. Based on the 
modification, they can enhance the delivery of peptides to the target 
site and improve the therapeutic efficacy, while minimizing side effects 
[130-132]. Due to the enhanced permeability and retention effect 
(EPR), high molecular weight polymers and nano-sized particles prone 
accumulate in solid tumors with higher concentrations [133].

Dextran derivative of carboxymethyl dextran (CMD) is frequently 
used as a drug deliver carrier due to its low glomerular filtration rate 
and lower hepatic uptake [134,135]. An CMD-peptide conjugates of 
CMD-s-s-peptide was prepared through the disulfide bond between 
CMD and EGFRZR-lytic peptide by Gaowa et al. [136,137]. The 
obtained conjugate could be stimulate-responsive by GSH and release 
to lytic peptide. Compared to the free peptide, CMD-peptide conjugates 
were highly accumulated in tumor tissue and the attachment of CMD 
prolonged the elimination half-life and more effective anticancer 
activity of peptide after intravenous injection.

Mu et al. [138] modified YIGSR with SMA [poly (styrene comaleic 
anhydride)] to improve anti-tumor activity of YIGSR and the studies 
in vivo indicated that bio- conjugate SMA-YIGSR have a prolonged 
plasma half-time and higher binding affinity than merely YIGSR. Mu 
et al. [139] further modified YIGSR with Polyvinyl pyrrolidone (PVP). 
The results showed that the activity and half-life time in plasma of PVP-
conjugated YIGSR (PVP-YIGSR) was more than 100-fold greater and 
15-fold longer than the free YIGSR, respectively.

Gelatin, which is usually obtained from collagen, has been 
extensively explored for its biocompatibility and biodegradation in 
the last few decades. Recently, the combination of antitumor hybrid 
peptide with anionic gelation was developed [137]. The electrospinning 
fabrication technique is emerging in biomedical application such 
as cancer therapies and wound healing treatments. Recently, a 
recombinant silkworm ACP of Bmattacin2 was used to load into PLLA 

nanofibrous membrane by this technique, PLLA [Poly (L-lactic Acid)] 
and Bmattacin2 conjugate was successfully prepared, which exhibited 
significant anti-tumor activity and a good compatibility with the 
normal cells [140].

Peptide Amphiphiles (PAs) is an amphiphilic molecule composed of 
alkyl chain and hydrophilic β-sheet forming sequence, which can deliver 
the AMPs to tumor cells effectively. Standley et al. [141] introduced a 
novel self-assembled nanoparticle that conjugated KLAK to Pas. It can 
kill the breast cancer cells not only by disrupting cell membrane, but 
also through the way of caspase independent and Bax/Bak independent 
apoptosis pathway. Zha et al. [142] further researched nanoparticle and 
they reported on the complex of hyaluronic acid and positively charged 
PA to bear KLAK peptide. Deng et al. [143] conjugated aliphatic acid 
of various lengths to anticancer peptide of B1, a novel ACPs derived 
from Cathelicidin-BF15. All results revealed that the modified ACP 
obtained a higher bioactivity towards tumor cells and indicated that 
the conjugated aliphatic acid enhanced hydrophobicity and helicity 
of peptides, which subsequently resulted in higher membrane-lyting 
capability of ACPs. Thus, this method is suitable for the modification of 
membrane activity ACPs.

In this part, we focus on the polymer modification of ACPs. From 
the above data, we think maybe PEGyation is mainly to increase the 
stability of ACPs, it suitable for the modification of cellular adhesion 
molecules such as RGD or YIGSR or proapoptotic peptide of D-(KLA)2. 
While the design of peptide amphiphiles (PAs) maybe a better choice 
for the modification of membrane activity ACPs because biophysical 
parameters play an important role for the biological activity of ACP.

Conclusion
In summary, peptide anticancer therapeutics is a promising field 

against cancer problems. The amino acid substitution, cyclization, 
hybridization, fragmentization, modification of ACPs are great 
potential methods and provide many advantages such as increased the 
half-life time in plasma, enhanced its stability and activity, reduced 
its toxicity, which could improve the therapeutic efficacy of ACPs. Of 
course, these methods do not exist lonely; they can be used to modify 
different ACPs or combined several methods to modify same ACP at 
the same time. We believe that ACPs as novel anticancer drugs will be 
play an important role for the clinical practices.
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