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Abstract

In an aging population, the decline in muscle mass and strength in combination with a high prevalence of
osteoporosis and cancer leads to a multitude of clinical manifestations. In the recent years, mouse models of
wasting in cancer and inflammation, including xenograft, genetic and chemically induced models, allowed to uncover
several key mechanisms underlying muscle loss. These include inflammation, hormone alterations and deregulated
protein degradation. Inflammation is associated with increased expression of tumor necrosis factor α (TNF-α),
nuclear factor κB (NF-κB), and interleukin (IL)-6 and is therefore linked to inflammatory bowel diseases or chronic
obstructive pulmonary disease (COPD). Moreover, active NF-κB signaling and IL-6 secretion commonly occurs in
malignancies and cancer-induced cachexia. The ubiquitin proteasome-mediated degradation of proteins represents
a second pathway underlying sarcopenia and is partially initiated by inflammatory signaling. Consequently,
increased levels of the E3 ligases Muscle RING-Finger Protein-1 (MuRF1), Atrogin-1/Muscle Atrophy F-box
(MAFbx), and tumor necrosis factor α receptor adaptor protein 6 (TRAF6) are associated with high rates of protein
degradation. Furthermore, hormonal alterations, such as the aging-related decline of growth hormone (GH) and
insulin-like growth factor 1 (IGF-1), lead to a reduction of muscle mass.

Interestingly, experimental targeting of several of those sarcopenia-associated factors in vivo resulted in a rescue
of muscle mass and function. While therapeutic options nowadays still need to be evaluated regarding their clinical
practicability, IL-6 antibodies, inhibition of cyclooxygenases and inhibitors of myostatin appear promising.
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Introduction

Definitions, epidemiology and costs
Loss of neuro-muscular function [1,2] leads to falls and fall-related

injuries that protract the encumbrance for the elderly [3]. This is
especially important in a population with a high prevalence of
osteoporosis, an age-related loss of bone density and strength [4,5]. On
the neural side, the basic functional unit of the neuromuscular system,
the motor unit, and its neural inputs profoundly change with age (for
review see [6]). On the muscular side, there are three major types of
loss in muscle mass described, i.e., atrophy, and cachexia and
sarcopenia. In atrophy, muscle fiber size decreases while the total
number remains unchanged. In cachexia both adipose and muscle
tissue are decreased, leading to diverse consequences dependent on the
concomitant medical condition. In contrast, sarcopenia leads to a
decrease in fiber size and number. Interestingly, the sarcopenia-related
decline in muscle mass during aging is frequently accompanied by an
increase in adipose tissue [7-10]. This correlation between obesity and
sarcopenia, referred to as "sarcopenic obesity" (SO), was investigated in
detail and confirmed in the InCHIANTI study in 1998 [11]. In
addition, muscle wasting is often concomitant with miscellaneous
severe diseases such as cancer, sepsis, liver cirrhosis, chronic

obstructive pulmonary disease (COPD [12]) or chronic heart failure
[13-17].

The forfeiture of muscles due to cancer cachexia has been estimated
to affect >1.3 million [18,19] in the US population alone. On a
worldwide prospect, more than 7.4 million deaths can be attributed to
muscle wasting annually [20] with currently about 1% overall
prevalence of cachexia in industrialized countries [21]. Intriguingly,
30% of cancer patients die due to cachexia, while more than 50% of
patients die with cachexia being present [22]. The healthcare costs were
reported around 18.5 billion dollar in the US in 2000 [23] and it was
estimated for Europe that sarcopenia leads to increases in
hospitalization costs between 34% and 58% [24].

These estimations are complicated by the fact that there is still no
consensus on how to diagnose sarcopenia.

Diagnosis
In contrast to osteoporosis, which can routinely be defined by

declining bone mineral density since 1994 [25], diagnosis of
sarcopenia and muscle wasting remains challenging. Generally, muscle
mass, strength and physical performance are evaluated to detect
sarcopenia. Methods include computed tomography, magnetic
resonance imaging, the assessment of handgrip strength and gait speed
as recently reviewed by Choi [26]. According to the International
Working Group on Sarcopenia (IWGS), the loss of muscle protein
mass and function [27] can be further defined as a low relative
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appendicular skeletal muscle mass (RASM, lean mass divided by
height squared [kg/m²]) [28-30]. In contrast, the criteria defined by the
European Working Group on Sarcopenia in Older People (EWGSOP)
include a decline in muscle mass plus either low muscle strength or low
physical performance [31]. The latter takes handgrip strength or grip
strength as parameters of muscle strength, which are interestingly
long-term predictors of mortality [6,32].

Models of muscle wasting
In aging, cancer, inflammation and hormone alterations are major

contributing factors of muscle wasting. Accordingly, several strategies
were described to investigate the mechanisms of muscle wasting in
mice based on these three aspects. Generally, the loss of muscle mass
was observed in xenograft and genetic mouse models as well as after
chemical treatments (Figure 1).

Figure 1: The interplay of aging-related factors in the development of sarcopenia and potential therapeutic approaches.

The progress of aging is frequently accompanied by the
development of cancer, inflammatory diseases, and hormonal
alterations. These aspects contribute to the increased inflammatory
signaling, however, also changes in myostatin levels can be observed
during aging. In inflammatory processes, nuclear factor kappa B (NF-
κB) is commonly activated which leads to elevated synthesis of the E3
ligase Muscle RING-finger protein-1 (MuRF1). In addition, Forkhead-
Box-Protein O (FOXO) levels are elevated which induce the E3 ligase

Atrogin1/Muscle Atrophy F-box (Atrogin1/MAFbx). Consequently,
the ubiquitin-proteasome system is deregulated resulting in high levels
of protein degradation. Moreover, aging is frequently accompanied by
low levels of testosterone, estrogen, Growth hormone (GH), and
Insulin-like growth factor 1 (IGF-1), which normally inhibits
Phosphatidylinositol-3-Kinase (AKT/PI3K) signaling. Accordingly, the
decrement of GH and IGF-1 leads to potent AKT/PI3K activity
inducing FOXO. Similarly, myostatin was described as a further factor
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inducing FOXO, for instance by being involved into the
phosphorylation of SMAD2/3 and thereby facilitating their binding to
SMAD4. Therefore, cancer, inflammatory signaling, hormonal
changes, myostatin, and deregulations in the ubiquitin-proteasome
system can contribute to the development of sarcopenia which is
characterized by a decrease in muscle mass, strength and physical
performance. Several mouse models reflect symptoms of this disease
and various potential therapeutic measures were successfully tested in
these experimental animals. So far, no potent drug to reduce the
burden of sarcopenia was generated for clinical practice.

Cancer
Xenograft models describe the transplantation of cells, such as

cancer cell lines, subcutaneously into the flanks of immunodeficient
mice, thereby frequently developing large tumors until muscle wasting
becomes apparent. For instance, in Lewis lung carcinoma (LLC) mice,
LLC cells are transplanted subcutaneously [33]. Studies showed that on
day 21 and 25 after inoculation, fat mass and lean mass were
significantly reduced [34]. In this model, the skeletal muscle-isoform of
gp130 (skm-gp130) seems to regulate muscle mass signaling crucially
through STAT3 and p38 [35]. In another xenograft model, the Murine
adenocarcinoma 16 (MAC16) mouse, UCP2 and -3-expression both
seem to protract muscle wasting, whether inflammatory cytokines
seem not to interfere [36]. Twenty days after injecting MAC16 colon
adenocarcinoma cells, lean body mass was significantly reduced,
independent from the cumulative food intake [37]. Another well-
established model is the C26 colorectal carcinoma model [38], in
which a C26-tumor fragment is subcutaneously transplanted. After
fifteen days, mice lost approximately 3g; after another one week, the
animals lost 12g in comparison to control groups, especially by wasting
of adipose and muscle tissue [39,40]. Another xenograft model for
muscle wasting is the Solid Ehrlich carcinoma in which Ehrlich-Lettre
ascites (EAC) carcinoma tumor cells are injected subcutaneously. 28
days after injection, handgrip strength and body weight were
significantly reduced, whereas food intake was not altered [41,42].
Finally, the Yoshida AH-130–model is generated by transplantation of
AH-130 ascites hepatoma cells [43]. Through activation of the
myostatin-system, the ubiquitin proteolytic system is activated via
Atrogin-1, MuRF-1 and E214k. Muscle loss is mainly detected in M.
gastrocnemius after seven days. While xenograft transplantations
reflect a relatively simple approach which can lead to the desired
outcome of muscle loss, they do not reflect the human situation
properly, for instance, due to the immunodeficiency [13].

This problem can be overcome by using genetic mouse models in
which frequently certain mutations or knockouts are induced to study
the role of a specific gene in vivo. The Adenomatous Polyposis Coli
(APC) multiple intestinal neoplasia (ApcMin/+) model, for example, is
characterized by a mutation in the APC tumor suppressor. The
heterozygous Min mutation leads to the formation of numerous
adenomas, forming throughout the intestine and consequently causing
muscle wasting and fatigue. Regularly, the animals die at an age of four
to six months. In these mice, lean muscle mass and single muscle mass
decreases significantly between week 13 and 22 [44,45]. Intriguingly, in
this model weight loss seems to be accompanied by an increase in IL-6
levels, thereby especially affecting M. gastrocnemius [46-48].

Furthermore, pancreatic adenocarcinomas often correlate with a
cachectic phenotype [32,33] which indicates the potential of the
common LSL-KRASG12D/+; LSL-TRP53R172H/+; Pdx-1-Cre (KPC)
mouse model for studying muscle wasting, especially in M. quadriceps

femoris. In these KPC-mice, pancreatic adenocarcinoma develops with
median survival of five months [13]. Underlying molecular
mechanisms involve increased levels of Atrogin-1 and MuRF1 [49-52].

Inflammation
As previously mentioned, inflammatory signaling is highly

associated with sarcopenia. Mechanistically, increased tumor necrosis
factor (TNF)-α levels lead to inflammation via NF-κB activation and
finally result in muscle wasting. For example, the SP-C/TNF model is
characterized by increased TNF-α level in lung and serum due to the
lung-specific surfactant protein c-promoter (SFTPC). Consequently,
pulmonary inflammation and thus wasting and impaired muscle
regeneration were observed in these animals [33,34], preferably in
male mice. Similarly, the increase of the TNF-like weak inducer of
apoptosis (TWEAK) protein exacerbates overall muscle atrophy,
whereas transgenic ablation decreases muscle loss. This effect was
primarily observed in M. soleus which showed reduced fiber size after
6 months and mostly increased fast-type fibers. As expected, these
mice were characterized by an increased abundance of the E3 ligase
MuRF1, however, MAFbx levels remained unchanged [35,36].
Moreover, the muscle-specific expression of IκB kinase (IKK) in MIKK
mice is required for ubiquitination and degradation of IκBα [37],
which activates NF-κB. Under the control of the muscle creatine kinase
promoter, constitutively active IKKβ via its phosphorylation of S177
and S181 leads to muscle wasting by impaired skeletal muscle mass.
Mostly, number of fibers is normal, but fiber diameter, area and
function are significantly reduced [38,39]. Other genetic models such
as muscle creatine kinase-Cre mice on a Cre-LoxP system have been
described, that make it possible to knockout specific proteins like
TRAF6 [40,41] or TGFβR-II [42] in the muscle, leading to prevented
cancer cachexia in an experimental model [41]. Besides these genetic
models for inflammation, there are also chemical models to induce
inflammatory signaling. Colitis induced by chemical treatments
reflects the human situation in inflammatory bowel diseases (IBDs)
and can serve as model for wasting [49]. For instance, it was
demonstrated that dextran sodium sulfate (DSS)- and trinitrobenzene
sulphonic acid (TNBS)-mediated colitis deregulated the expression of
smooth muscle contractile proteins in vivo, thereby impairing muscle
function [43]. In addition, muscles of TNBS-treated mice were
characterized by increased Atrogin-1 and MuRF1 mRNA levels and
elevated protein degradation rates [44].

Hormones
In contrast to cancer- and inflammation-related experimental

animals, mouse models for hormonal deficiency and resulting effects
on muscle mass are rare. For instance, due to its major function in
muscle development and function, mice with a global reduction of
IGF-1 were generated. Unfortunately, these mice were characterized by
impaired tissue development and subsequent postnatal lethality [45]. It
was possible to overcome this problem by the generation of mice with
a muscle-specific IGF-1R/IR (insulin receptor) knockout. These
animals showed a severe decrease in muscle mass [46]. In addition, one
of the main contributing component of sarcopenia is the growth
hormone receptor (GHR). It could be demonstrated that GHR loss in
mice resulted in a lower muscle mass in M. soleus and M. tibialis
anterior [47] and, therefore, GHR knockout can serve as a model of
age-related sarcopenia. Finally, the reduction of estrogen levels via
ovariectomy was shown to be a valuable model for sarcopenia [48],
especially when housing animals in an enriched environment [49].
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Finally, the administration of Angiotensin II via osmotic
minipumps over two weeks leads to a weight-reduction of 56% after
one week and 41% after two weeks. Mechanistically, reactive oxygen
species and IGF-1 lead to apoptosis and protein degradation and
therefore muscle wasting [50,51], which reveals the Angiotensin II-
Infusion as an uncommon model for muscle wasting.

While mouse models do have several limitations, such as the high
effort to generate them, heterogeneous knockout efficiencies, and a
more rapid muscle loss compared to humans, they give us the
opportunity to dissect molecular pathways.

Pathogenesis
Based on these models, four main pathways involved in the

development of muscle wasting have been described: Inflammation,
ubiquitin proteasome-mediated degradation, hormonal alterations and
malignancies. Molecular key players in these pathways were defined
and reflect potential therapeutic targets.

Inflammation
Inflammatory signaling, one of the key mechanisms underlying

muscle loss, frequently involves the activation of the NF-κB via TNF,
finally resulting in the production of pro-inflammatory cytokines
including interleukins [52]. For instance, when investigating
sarcopenic obesity, it was demonstrated that inflammatory signaling is
frequently induced in adipose tissue in which adipocytes and
infiltrating macrophages secrete pro-inflammatory cytokines. In fact,
high levels of C-reactive protein (CRP), IL-6 and TNF-α [53] were
associated with decreased muscle mass and strength in patients.
Interestingly, TNF-α secretion was shown to promote apoptotic
signaling with age. Since muscle fibers are multinucleated, apoptosis
does not necessarily interfere with fiber integrity, however, it was found
to contribute to sarcopenia [54,55]. Moreover, inflammatory bowel
diseases were associated with sarcopenia. In fact, besides IBD-related
malnutrition which is associated with weight loss, inflammatory
signaling was shown to significantly contribute to sarcopenia.
Generally, IBDs such as CD and ulcerative colitis (UC) are
characterized by activated NF-κB signaling [56] and up to 60% of
Crohn’s disease (CD) patients were affected by severe muscle loss [57].
Accordingly, treating CD patients with the TNF-α inhibitor Infliximab
resulted in an increase in muscle volume and strength, as well as in a
decrement in IL-6 levels [58]. Similarly, chronic obstructive pulmonary
disease (COPD) is associated with increased NF-κB activation [59] and
15% of affected individuals develop sarcopenia [12]. Furthermore,
COPD patients were more likely to present SO resulting in a severe
systemic inflammation and reduced exercise capacity compared to
individuals without COPD [60].

Ubiquitin proteasome-mediated degradation
Besides inflammatory signaling, the homeostasis between protein

synthesis and degradation is not maintained in sarcopenia. In addition
to its function in cytokine production, activated NF-κB can translocate
into the nucleus to mediate the induction of MuRF1. MuRF1 is an E3
ligase which conjugates protein substrates with an ubiquitin molecule,
thereby potentially targeting its substrates for proteasomal
degradation. Interestingly, MuRF1 activation interferes with the
sarcomere integrity by degrading the myosin heavy chain and further
filament components [61,62]. Similarly, the E3 ligase Atrogin-1/
MAFbx is induced upon constitutive FOXO 3 activation [63]. In

addition, myostatin, a protein exclusively expressed in smooth muscle
cells, was shown to increase FOXO levels by assisting during the
phosphorylation of the transcription factor SMAD2/3 and thereby
facilitating its binding to SMAD4 as reviewed in detail elsewhere [64].
Consistently, MuRF1 mRNA levels were increased in limb muscles of
cachectic COPD patients [65] and MAFBx in smokers [66].
Interestingly, the deletion of MuRF1 and MAFbx in vivo could prevent
muscle loss [67] and treatment of myoblasts with IGF-1 in vitro was
able to inhibit the expression of MuRF1 and Atrogin-1 [68]. Moreover,
the E3 ligase tumor necrosis factor α receptor adaptor protein 6
(TRAF6) is upregulated in skeletal muscle wasting through the
activation of JNK1/2 [41]. Consequently, the downstream signal
molecules MAFBx and MuRF1 were upregulated [69]. Interestingly,
upon cytokine stimulation TRAF6 was shown to be involved in the
activation of NF-κB and Protein Kinase B(PKB/AKT)/PI3K signaling
[70,71]. In addition, it was described to be critical for homeostasis of
satellite stem cell function and therefore myofiber regeneration [72].
Accordingly, inhibition of TRAF6 resulted in the preservation of
cancer cachexia [41]. Interestingly, TRAF6 loss exacerbates DSS-
induced colitis in mice [73].

Hormonal alterations
Aging is accompanied by changed levels of hormone production.

For instance, secretion of growth hormone (GH) and IGF-1 decline
with age and, interestingly, this phenomenon is associated with
sarcopenia [74]. Generally, binding of IGF-1 to its receptor leads to the
activation of the AKT/PI3K pathway. Decreased AKT/PI3K signaling
results in impaired phosphorylation of FOXO members resulting in
the nuclear translocation of this transcription factor family. Nuclear
localization and constitutive activation of FOXO3 induced
transcription of Atrogin/MAFbx and thereby severe muscle atrophy
[63].

Besides the effect on GH and IGF-1, the decline in testosterone and
estrogen levels were correlated with aging and sarcopenia [75].
Interestingly, testosterone supplementation increases IGF-1 expression
in vitro [76] and exerts a positive effect on muscle mass and strength in
older men [77]. In contrast, the effect of estrogen was highly
dependent on the route of administration since IGF-1 levels increased
after transdermal and decreased after oral treatment [78].

Malignancies
Muscle wasting was described as comorbidity in several human

malignancies, including colorectal, pancreatic, and lung cancer [79].
Similar to sarcopenic obesity and hormonal alterations, malignancies
frequently develop in elderly individuals. In fact, 50% of all cancer
diagnoses and 70% of cancer-related deaths are attributed to an age ≥
65 years [80]. As recently reviewed by Gordon and colleagues,
inflammatory responses, including active NF-κB signaling,
significantly contributes to cancer-related cachexia. For instance, lung
cancer patients are characterized by highly elevated NF-κB activity in
limb muscles [81] and in a mouse model for lung cancer, IL-6 secretion
modulated muscle mass via inducing FOXO3, Signal transducer and
activator of transcription 3 (STAT3), and the kinase p38 [82].
Moreover, myostatin was shown to be secreted by C26 colon cancer
cells in vitro and to upregulate MuRF1 and Atrogin-1 levels [83]. The
increased abundance of MuRF1 and Atrogin-1, thus, deregulated
ubiquitin proteasome‐mediated degradation could reflect another
mechanism associated with cancer cachexia. Accordingly, myostatin
inhibition increased skeletal muscle mass and strength in vivo [84].
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Therapy
Therapeutic options in sarcopenia consist of physical training [27],

sufficient nutrition and pharmacotherapy [85-87]. Pharmacotherapy is
based on the highly heterogeneous underlying molecular pathways
associated with muscle wasting. Thus, possible therapeutic options aim
at different targets.

Since inflammation is one of the key players mediating the
development of sarcopenia, several studies sought to inhibit underlying
pathways in order to prevent muscle loss. For instance, the inhibition
of TNF-α, an activator of NF-κB signaling, using Thalidomide was able
to reduce the severity of muscle loss in rats with biliary cirrhosis [88].
However, as described in a Cochrane review, the effects of Thalidomide
in the treatment of cancer-associated cachexia are not completely clear.
Therefore, its suitability for clinical practice still needs to be elucidated
[89]. As mentioned earlier, treating IBD patients with Infliximab, a
potent anti-TNF-α agent, resulted in an increase in muscle mass and
strength [58]. Similarly, administration of IL-6-neutralizing antibodies
could restore tumor-induced cachexia in mice [90]. Moreover,
inhibition of cyclooxygenases (COX), mediators of inflammatory
responses, represents a potential therapeutic strategy [91].
Interestingly, we recently demonstrated the beneficial effect of the
lipoxygenase inhibitor baicalein on muscles [48]. Generally, this agent
is a potent inhibitor of inflammation by interfering with COX-2 gene
expression [92]. During our study we discovered that baicalein
treatment increased muscle fiber area and diameter and led to elevated
number of capillaries per fiber in non-ovariectomized as well as
ovariectomized rats. Together, a protective effect of baicalein on muscle
cells was suggested due to the stimulation of angiogenesis in skeletal
muscle and by reducing the muscle loss mediated by decreased
estrogen levels [48]. Studies like this indicate the potential of anti-
inflammatory agents in the treatment of sarcopenia.

Furthermore, the success of drugs interfering with hormone
deregulation was reported. Hormone supplementation is FDA-
approved for several syndromes associated with muscle wasting.
However, while testosterone therapy was able to increase muscle
strength in several studies, GH supplementation failed to induce
changes in muscle function [93] but could increase muscle mass
[94,95]. Likewise on the hormone level, encouraging effects of vitamin
D on muscle strength [96] in vitamin D-deficient individuals [97,98]
have been discovered.

Another apparent target is myostatin, which inhibits protein
synthesis and, accordingly, systemical administration of myostatin in
vivo resulted in severe muscle loss. Antibodies targeting myostatin
were generated and in vivo data show increased muscle mass and grip
strength in mice [84]. Furthermore, myostatin-inhibitors such as
propeptide-Fc (GDF8 propeptide-Fc) increased muscle mass in vivo
[99]. The glycoprotein Follistatin inhibits myostatin and therefore leads
to muscle hypertrophy in vivo [100,101]. Similarly, soluble myostatin
receptors reduced muscle atrophy [102] and siRNA-mediated
myostatin silencing showed promising results in mouse models [103].
Similarly, adeno-associated virus serotype 8 (AAV8) vectors can be
used to transfect myostatin propeptides and subsequently raise muscle
growth [69].

Another potential target is the E3 ligase TRAF6 which is involved in
protein degradation via the ubiquitin-proteasome system. Interestingly,
anti-TRAF6 siRNA administered in a mouse model rescued muscle
atrophy in vivo [69]. Taken together, several molecular players
involved in the development of sarcopenia were defined and inhibition

of these factors was shown to have a beneficial effect on muscle mass
and function in several in vivo studies. However, while several
promising drugs were generated, the ultimate objective to use a
therapeutic agent in clinical practice to lower sarcopenia burden in
patients still requires further investigations.

Conclusion
Sarcopenia reflects a major health problem by affecting the

individuals’ quality of life as well as by causing a significant economic
burden for society. Over the last decade, several molecular players
involved in the development of this disease were defined in mouse
models as well as in patient samples. A number of in vivo studies
indicated promising therapeutic strategies, however, no suitable drug
was generated for clinical practice so far. Thus, further extensive
research is required in this field.

Genetic mouse models offer attractive experimental setups since
they reflect the human situation more closely than xenograft models.
In future projects, molecular players of muscle loss could be identified
by next generation sequencing using sarcopenia patient-derived
muscle samples. Subsequently, the function of potential mediators of
this medical condition could be defined by performing muscle-specific
knockouts in mice. Subsequently, methods to rescue these phenotypes
could include treatment with anti-inflammatory drugs, specific small-
molecule inhibitors or physical training.

Finally, inflammation seems to be one of the major mechanisms
involved in muscle loss and, importantly, inflammatory signaling
accompanies a variety of further pathological conditions including
cancer, IBDs and COPD. Therefore, muscular targeting of anti-
inflammatory agents would be highly promising for future studies.
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