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Abstract

Over the recent decades, there has been a number of studies investigating the role of mucins in the pathogenesis
of various cancers such as breast, lung, ovarian, gastrointestinal and pancreatic malignancies. Since then, it has
been discovered that mucins play a critical role in tumorigenesis as they can mediate cell proliferation, metastasis
and resistance to chemotherapy. Thus, mucins have been explored as a potential therapeutic target as well as a
biomarker, as cancer cells often have an aberrant expression of mucins. MUC16 is a glycoprotein coded by one of
the 21 mucin genes. CA125, the extracellular domain of MUC16, is a well-established biomarker for ovarian cancer,
however there is no in depth literature review on MUC16 as a target for anti-cancer therapy. Thus, this review
summarises the existing literature on MUC16, the current therapies targeting on MUC16 and highlights future
avenues for targeting mucin-producing cancers.
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Introduction

MUCIS6 is a type of Type 1 transmembrane mucin with a molecular
weight of 3-5 million Da [1], making it the largest glycoprotein out of
the mucin family. It is a well-established biomarker used to monitor
the progression and recurrence of ovarian cancer. Furthermore, it is
overexpressed in a range of human malignancies including ovarian,
pancreatic, breast, cholangiocarcinoma, cervical, gastric and non-small
cell lung cancer [1-6]. Mucins are a family of high molecular weight
glycoproteins composed of oligosaccharides attached to a peptide core
[7]. There are three main components to MUCI16 including an
extracellular N-terminal domain, tandem repeat domain and carboxyl
terminal section as seen in Figure 1. Several hundred oligosaccharides —
are attached to the N-terminal domain through O-linked glycosylation ‘ | g
and N-linked glycosylation whilst the tandem repeat region (TRR) has ,E
approximately 60 repeats of a 156 amino acid sequence, with 8
disulphide bonds that confers structural stability. Attached to the TRR
is a smaller C-terminal domain that also contains a cytoplasmic tail
involved in intracellular cell events (Figure 1) [1,3,8].

Tandem Repeal Region
J

Importance of MUC16 in Cancer Figure 1: Structure of MUCI6.

MUCI6 is normally present in the respiratory, reproductive and

corneal epithelium. As a large glycoprotein, it is able to form a
chemical barrier to protect the epithelium against hostile
environmental conditions and pathogens [1,9]. However, cancer cells
have an aberrant expression of mucins, which confers a number of
oncogenic properties such as increased cell proliferation, evasion of the
immune system and metastasis [1,3,10].

Ovarian cancer

More than 80% of epithelial ovarian cancers overexpress MUCIS6,
also known as CA125 [11,12]. CA125 is part of the extracellular
portion of MUCI16 that can be shed into the circulatory system [10].
Therefore, serum levels of CA125 are used to monitor disease status
and recurrence after surgery or radiotherapy [13,14]. Functionally,
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MUCI6 is an important molecule in metastasis through modulating E-
cadherin, N-cadherin and vimentin expression [15-17]. MUCI16 also
binds to mesothelin, a protein involved in peritoneal metastases of
ovarian cancers. Other properties include inhibition of apoptosis,
contributing to chemotherapy resistance [8,11,18] and activation of
STAT3 through JAK2, which increases cell proliferation [3,13].
Additionally, MUCI16 is implicated in reducing the immune system
response by binding to inhibitory receptors on natural killer (NK) cells
[1,19] and decreasing expression of CD16, a cytokine that stimulates
NK cells [20,21].

Pancreatic cancer

There is a progressive increase in the expression of MUC16 from the
precursor pancreatic intraepithelial neoplasia to adenocarcinoma,
further suggesting its significance in tumorigenesis [22,23].
Furthermore, MUC16 has been reported to correlate with higher
metastatic burden, and serum CA125 levels at baseline was a predictive
factor for metastasis after resection [9,24,25]. A number of mechanistic
studies have shown that MUCI16 binds to mesothelin, E and P selectin
and upregulates the FAK mediated Akt pathways, which confers
metastatic properties [10,26-28]. Other oncogenic properties of
MUCI6 include reprogramming metabolism [29] and increasing cell
proliferation through JAK2 [30]. A number of other studies have also
looked into the importance of MUCI16 in mediating resistance to
therapy. Mucins in general have been implicated in resistance through
a number of mechanisms including forming a physical barrier around
the tumour cell [31]. Specifically, MUCI16 is involved in inhibiting
apoptosis and blunting the cellular response to genotoxic drugs [32].
As it plays an important role in the oncogenesis, MUC16 has garnered
attention as a biomarker to monitor disease and predicting response to
therapy [2,7,33].

Breast cancer

MUCI16 is overexpressed in breast carcinomas [34]. Functionally,
the MUCI16 glycoprotein interacts with JAK2, resulting in the
phosphorylation of STAT3, inducing cell proliferation. MUC16 also
down regulates the tumour necrosis factor-related apoptosis-inducing
ligand apoptotic pathway (TRAIL) [35]. Hence, MUC16 knockdown
in breast cancer cells resulted in increased apoptotic rates, suggesting
again that it plays an important role in cancer cell survival [36].

Lung cancer

MUCI6 is associated with invasive lung cancer and predicts a
poorer clinical prognosis in those with metastatic lung cancer through
mediating chemoresistance and increasing the aggressive of the cancer
[37]. Furthermore, it is also involved in mediating resistance to
platinum based genotoxic drugs through increased expression of
TSPYLS5 (testis-specific Y-like protein). TSPL5 can subsequently bind
to ubiquitin specific protease to inactivate p53, a tumour suppressor
protein [3].

Bladder cancer

Similarly, MUCI16 stimulates angiogenesis and mediates metastasis
in advanced bladder cancer and may have clinical utility as a
biomarker. However, further work is needed to elucidate the functional
significance of MUCI6 in urological malignancies [38].

Oral squamous cell carcinoma

In a study involving 97 patients, CA125 levels were measured with
ELISA between oral squamous cell carcinoma, non-neoplastic disease
of the oral cavity and controls. CA125 levels were higher in the saliva
of those with oral squamous cell carcinoma compared to those with
non-neoplastic disease or healthy controls. However levels didn’t
correlate with grade or prognosis [39].

MUCI16 as an Anti-Cancer Target

The most common therapeutic approach has been using antibodies
against the tandem repeat region of MUCIS6, specifically CA125.
However, other emerging therapies and potential avenues of treatment
also exist.

Anti-MUC16 antibodies

There have been a number of antibodies developed against CA125,
an epitope of MUCI16 contained in the tandem repeat region, for the
treatment of ovarian cancer as a potential front line therapy, and a
maintenance drug to prevent recurrence disease [8]. Mab-B43.13, also
called oregovomab, is a monoclonal antibody that binds to CA125
forming antigen-antibody complexes to stimulate an immune response
[40,41]. Although patients had a measurable increase in both T and B
cells [42,43], clinically it was met with limited success [44].

Abagovomab, is an anti-idiotypic antibody targeting CA125 in
ovarian cancer. It is designed chemically similar to the tumour antigen,
thus eliciting an immune response against the cancer cells [45].
Although it showed potential in Phase I and II trials, ultimately the
therapy failed to show significant benefit over the placebo [46-48].
Interestingly, patients with cytotoxic T-cells (CTLs) against MUC16
had a better clinical prognosis regardless of whether they received
therapy, suggesting the importance of MUC16 in ovarian cancer [49].
Other than monoclonal antibodies, studies have also investigated the
use of vaccinations such as the ACA125 vaccine, which showed a 3-
month improvement in progression free survival in patients with
advanced ovarian cancer [50,51]. Similarly, another preclinical study
investigating a MUC16 vaccine showed that patients generated an IgG
response, however the clinical utility is yet to be determined [52].
Overall, immunotherapy has shown limited benefit. This may be due to
the fact that the extracellular domain of MUC16 undergoes cleavage,
which reduces the binding of these monoclonal antibodies to the
tumour cells. Furthermore, due to the shedding of MUCIS, it is also
likely that the drug binds to circulating MUCI16 in the serum, hence
only a small fraction ever reaches the tumour cells [8]. Therefore, to
improve current immunotherapy for MUCI16, it would be necessary to
generate antibodies against the carboxyl terminal domain that does not
undergo cleavage. Currently, Dharma et al. has developed an antibody
binding to the carboxyl terminal domain of MUCI16, which is retained
by the tumour cells after cleavage. However, this has only been
performed in vitro [53].

Adoptive immunotherapy

CAR (chimeric antigen receptor) T cells are genetically modified T
cells that express a receptor for a specific tumour antigen. They are able
to bind to the tumour cell with higher affinity, magnifying the
cytotoxic T cell killing effect. Recently, a CAR T cell expressing the
MUCI16 epitope has been designed for a Phase I clinical trial. In order
to enhance the efficacy of the treatment, the T cell has also been
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modified to increase the expression of IL-12, a cytokine with anti-
cancer properties [54]. Another similar study had looked at CAR T
cells expressing MUC16, which had cytotoxic effects in vitro and
completely eliminated the tumour in murine models [55]. The clinical
benefit of these therapies over existing regimens, however, needs to be
evaluated.

Targeting interactions between MUC16 and downstream
targets

MUCI6 interacts with a number of oncogenic proteins such as
mesothelin, an important molecule that regulates cell adhesion,
strongly implicated in peritoneal metastases of ovarian cancer [56].
HN125 is an immunoadhesin that has a high affinity for MUC16. It
was created by combining mesothelin with the constant domain of
human immunoglobulin. By binding to the glycoprotein, it can
antagonize the interaction between MUC16 and mesothelin, therefore
inhibiting the spread of ovarian cancer. Furthermore, it was also able to
generate an antibody dependent cytotoxic response against MUC16
expressing ovarian cancer cells. Inmunadhesins therefore can be an
alternative method of immunotherapy in cases where monoclonal
antibodies have failed [57]. A similar antibody MORAb-990 that
antagonises the binding of MUCI16 to mesothelin has also been
explored in a Phase I trial and showed an additional benefit of
chemosensitization [58].

Antidrug conjugates

As cancer cells overexpress MUCI16, by binding the drug to an anti-
MUC16 monoclonal antibody this specifically targets tumour cells.
Utilising this method in MUCI16 positive cancer has reportedly
reduced systemic side effects and improves potency of the drug [8].
Currently it has been tested in a Phase I clinical trial where the drug
monomethyl auristatin E was bound to anti-MUCI16 antibodies. One
patient had a complete regression of their tumour whilst five has a
reduction [1]. In another Phase 1 multicenter study they conjugated
the same drug to another MUCI16 antibody DMUC5754A and
administered it to 66 platinum-resistant ovarian cancer patients and 11
unresectable pancreatic cancer patients. Six patients had a positive
response whilst for two of the patients the drug was able to stop the
progression. CA19-9 serum levels were measured to monitor response
rate [59]. Another in vitro study has investigated Meso-TR3, a
recombinant protein combining mesothelin and TR3, that binds to
MUCI16. By combining the drug TRAIL (TNF-related apoptosis
inducing ligand) with Meso-TR3, a higher concentration of the drug
reached the ovarian cancer cells resulting in an upregulation of
apoptosis for both in vitro and animal studies [60].

Mucolytic agents

Considering the difficulty of targeting MUCI16, an alternative
therapeutic approach would be to utilise mucolytic agents that deplete
mucins in general. One such combination is the use of bromelain and
N-acetylcysteine. Bromelain, an extract from pineapple stem, is a
mixture of proteolytic enzymes able to cleave glycosidic bonds in
mucins [61] and is traditionally used as a complementary medicine for
its anti-inflammatory and anti-thrombotic effects [62]. N-
acetylcysteine is a derivative of a natural amino acid, used as a
mucolytic agent in conditions such as cystic fibrosis and also as an
antioxidant for acetaminophen poisoning [63,64] and is able to cleave
disulphide bonds that stabilize the mucinous structure [65]. Recently,

the combination has garnered attention as an anti-cancer agent,
particularly in regards to its mucolytic properties.

The utility of bromelain and N-acetylcysteine has been investigated
in a number of mucin producing cancers such as malignant pleural
mesothelioma [61,66], gastrointestinal cancers [65,67-69]. These in
vitro studies have shown that bromelain and N-acetylcysteine
synergistically reduces mucins, thus depleting the cells of an essential
protective framework resulting in increased cell death as well as
increased chemosensitivity [61,65-69].

Conclusion

Although it is used widely as a biomarker for ovarian cancer, it is
clear that MUCI16 plays an important role in the pathogenesis of a
number of human malignancies such as ovarian, breast, colorectal and
pancreatic cancer. However, we are yet to completely understand the
mechanism of MUC16 in facilitating tumour growth and invasion and
currently we do have any effective therapies against MUC16. One of
the major barriers to achieving this therapeutic goal is that the
structure and function of MUCI6 is not well characterised.
Additionally, the majority of the methods for therapy and clinical trials
have focused primarily around ovarian cancer. This review highlights
the unexplored capacity of MUCI6 as a potential therapeutic target in
namely pancreatic and breast cancers, and the importance of
examining these other mucin-producing tumours.
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