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Introduction
The process leading from genes to phenotypes is complex, and 

the environment can have a large effect. For example, most proteins 
are the products of multiple genes. Whether a protein is an enzyme, 
receptor, hormone, or other, it functions in a specific environment 
that includes external factors (e.g., temperature, rainfall, amount of 
sunlight, nutrition) as well as internal factors (e.g., other hormones, 
enzymes). Further, biochemical pathways are not always linear 
processes: they can have multiple positive and negative feedback loops, 
may involve multiple steps and the products of hundreds of genes. 
Thus, the evolutionary forces acting on a single gene are most often not 
simple, but are environment-specific selection in the context of other 
gene products.

Recent efforts to unravel the genetic factors that influence 
important phenotypes such as disease diagnosis and predisposition, 
have taken the form of genome-wide association studies (GWAS). If 
genetic variations are more frequent in persons with a given disease, 
the variations are said to be "associated" with the disease. The associated 
genetic variations serve as pointers to regions of the human genome, 
that are potentially involved in causing the disease. The GWAS 
approach is usually non-hypothesis driven. It uses brute force methods 
to scan the entire genome, to determine which genes demonstrate an 
association. 

In general, GWAS apply univariate statistical tests to each gene 
marker or single nucleotide polymorphism (SNP) as an initial step. 
This SNP-based test is statistically straightforward, and the core tests 
for assessing the associations are standard methods (e.g., χ2 tests, 
regression) that have been studied outside of the GWAS context. A 
recent paper by Kuo and Feingold [1] describes the most commonly 

used statistical methods that are applied to GWAS. All tests cited in the 
paper are single-locus tests. Some authors [2] recommend combining 
two or more statistical tests, if the genetic inheritance properties are not 
known. In many cases, the SNPs associated with a disease are not in a 
region of DNA that codes for a protein. Instead, they are in the large 
non-coding regions between genes or in intron sequences, which are 
edited out of mRNAs prior to translation to proteins. These regions 
are presumably, sequences of DNA that modify gene expression, but 
usually their function is unknown [3].

The popularity of the GWAS approach belies its simplicity and 
obscures the important issue of, whether a single-gene model is 
conducive to unraveling the workings of the biosynthetic pathways 
of a phenotype. In the path leading from gene to trait, factors such 
as epigenetics, alternate splicing, gene expression levels and protein-
folding processes create a great deal of complexity. These are ignored 
by qualitative trait analysis, the most common GWAS model reported 
in the literature. As of mid-2011, over 1,000 human GWAS have 
examined more than 210 diseases and traits and reported over 1,200 
SNP associations. Most of these GWAS employed a single-gene model 
that assumes that, each locus acts independently of the others. 

Abstract
This paper investigates epistatic scenarios in a genome-wide association studies (GWAS) context using a 

qualitative association model, to assess the statistical models that reliably predict associations between a qualitative 
phenotype (i.e., a disease diagnosis) and a pair of interacting genes. We employed the concept of relative risk, which 
is the ratio of the probability of a positive diagnosis given a mutated genotype divided by the probability with no risk 
present.

We used a Monte Carlo-based simulation approach, to generate synthetic data corresponding to a variety of 
possible epistatic models (EMs). Our method took into account the strength of association, disease prevalence 
in non-risk populations and most importantly, the inheritance patterns of the epistatic genes. We analyzed the 
simulated gene data, to assess how these individual factors influenced statistical power in the context of GWAS. 

Using simulated data provides two distinct advantages. First, the association-affecting factors are isolated and 
can be linked to the affecting locus. Second, we can use any specific statistical method to perform the assessment. 
The simulated dataset provides a truth set, for assessing the effect of statistical method choice on association 
sensitivity, and highlights the role of errors in disease diagnosis and incorrect genotype assignments.

The results indicate that the most powerful statistical methods for predicting associations between phenotypes 
and genotypes, in epistatic scenarios are statistical models that simultaneously test for associations involving both 
interacting loci. This result is not surprising and has been reported by others. Two-gene models produce better 
predictions of association than single-gene models. The significance of this study is twofold: First, it incorporates 
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Many researchers believe that complex diseases involve multiple 
genes and their interactions [4,5]. Although GWAS have had some 
success in identifying genetic variants underlying complex diseases, 
most existing studies are based on limited single-locus approaches, 
which detect SNPs based on their marginal associations with a 
qualitative disease diagnosis.

Classical statistical tests derived from case-control experiments 
involving two loci that use Pearson’s χ2 test or logistic regression, are 
commonly used as single-locus tests for GWAS and can be used in 
searching for pair-wise interactions. One early study that investigated 
interactions is Marchini et al. [6], which showed that explicitly 
modeling interactions between loci for GWAS, with hundreds of 
thousands of markers is computationally feasible. They also showed 
that simple methods explicitly considering interactions, can actually 
achieve reasonably high power with realistic sample sizes, under 
different interaction models with some marginal effects, even after 
adjustments for multiple testing using the Bonferroni correction. 
However, the genotype-phenotype scenarios addressed by Marchini et 
al. [6] had substantially larger effects than those that we examine here. 
Specifically, we focus on low-effect loci, those with low relative risk of 
association with disease diagnosis, because the evidence suggests they 
are common [7]. We also focus on theoretical examples of epistasis that 
are affected by the mode of inheritance, without assuming an additive 
inheritance model. 

An overarching goal of this study was to review the evidence, as to 
whether statistical methods based on single-gene models can effectively 
identify genotype-phenotype associations for multi-gene processes. 
Detecting such associations is particularly difficult for genetic 
variants with modest impacts on risk. Consequently, our experiments 
specifically investigated scenarios involving low-risk genetic variants, 
and assessed whether multi-gene scenarios could be a source of the 
“missing heritability” observed using single-gene models [8]. We also 
examined the impact of two recent studies that collaborated in the 
development of novel tests, for measuring interaction between two 
linked (in epistasis) or unlinked loci [9,10]. These studies purport to 
have higher power to detect interaction than classical logistic regression 
models.

Our investigations demonstrate that for low-effect loci, single-gene 
models of association fail to identify many associations because the 
interacting locus masks the effect on the index locus. For the scenarios 
we tested, our results also support the assessment by Wu et al. [9] 
and Ueki et al. [10] that, analytical methods that assume statistical 
interactions between loci are more powerful than single-loci models. 

Note that, we will refer to markers as loci but they could also be 
viewed as genes, SNPs or haplotypes.

Epistasis analysis 

One way to extend the single-gene model to accommodate multiple 
genes, involves studying gene pairs and their epistatic relationships. 
Epistasis analysis is the genetic methodology used to identify which 
genes act in a particular cellular process or pathway, and to establish 
an order-of-function map that reflects the sequence in which they 
act. It typically involves determining for a pair of genes, whether the 
phenotype of a double mutant more closely resembles that of one of 
the single mutants, or if it is a novel phenotype. If a researcher knows 
what type of pathway is being investigated, this information can help 
establish what the relationship is between the two genes. 

Two types of pathways can be defined: substrate-dependent and 

switch regulatory. Substrate-dependent pathways consist of a specific 
series of positive reactions, each of which involves some gene product 
(e.g., an enzyme) acting on a substrate produced in the previous 
step in the pathway, and ultimately producing some final outcome. 
Switch regulatory pathways consist of genes encoding negative or 
positive regulatory factors that alternate between “on” and “off” 
states, depending upon upstream signaling events, thereby affecting 
some downstream response. Because substrate-dependent pathways 
comprise only positive factors, while switch regulatory pathways can 
comprise both positive and negative factors, interpreting results from 
epistatic studies is typically less complex for substrate-dependent 
pathways. Therefore, for the sake of simplicity, this analysis focuses on 
substrate-dependent pathways.

A number of studies argue that interacting loci may be normal 
and not the exception. For example, Templeton et al. [11] report that 
experience has revealed that, most complex traits depend upon more 
than one locus [11]. Their study focuses on how often interactions 
among the loci play a significant role in the mapping from genotype 
to phenotype, given that the phenotype is influenced by two or more 
loci. They discuss a number of candidate scenarios, including Coronary 
Artery Disease (CAD), where the ApoE gene has been shown to affect 
males and females differently. Even the reported Mendelian trait sickle-
cell anemia is commonly presented as a single nucleotide trait. Finally, 
Gilbert-Diamond and Moore indicate that gene-gene interactions 
(epistasis) are a significant complicating factor in the search for disease 
susceptibility genes [12]. 

Objective
This paper investigates epistatic interactions in a GWAS context 

using a qualitative association model. The purpose of this exercise is 
to determine the statistical methods and models, that reliably predict 
associations between a qualitative phenotype (specifically, a disease 
diagnosis, coded as “case” for a positive diagnosis or “control” for a 
negative diagnosis) and a pair of interacting genes. As with our other 
work, we use the concept of relative risk, the ratio of the probability of 
a positive diagnosis given a specific genotype and epistatic model (EM) 
divided by the probability with no risk present (i.e., P). The value of P 
is specified exogenously.

We employed a Monte Carlo-based simulation method to generate 
synthetic data, corresponding to a variety of possible epistatic models 
for substrate-dependent pathways. The method takes into account, 
factors known to influence association measurements in GWAS, 
including the relative risk of association, disease prevalence in non-
risk populations, inheritance properties of the simulated loci, and 
most importantly, the epistatic relationship of the simulated loci. We 
then analyzed the simulated gene data, to assess the influence of these 
individual factors on statistical power in the context of GWAS. There 
were two advantages to using simulated data. First, the association-
affecting factors were isolated and could be linked to the affecting locus. 
Second, we could choose any specific statistical method to perform 
the association assessment. The simulated dataset provides a truth set 
for assessing the role of statistical methods on association sensitivity, 
and highlights the particular role of errors in disease diagnosis and 
incorrect genotype assignments.

Epistatic models of inheritance

Table 1 defines four possible epistatic models (EMs) for substrate-
dependent pathways, as described in the literature [13]. Let gene1 
and gene2 be distinct genes with varying genotypes that affect the 
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production of a common gene product, P, ultimately influencing a 
phenotype (diagnosis of disease). Mutation of gene1 results in a level 
of expression X of P and a relative risk Φa of exhibiting the disease 
phenotype. Similarly, mutation of gene2 results in a level of expression 
Y of P and a relative risk Φb of exhibiting the disease phenotype. The 
phenotype of the gene1gene2 double mutant varies according to the 
EM. If gene1 acts upstream of gene2 in the pathway leading to P (EM 1), 
the double mutant exhibits the phenotype of the gene1 single mutant 
(gene1 is epistatic to gene2). Conversely, if gene2 acts upstream of gene1 
in the pathway leading to P (EM 2), the double mutant exhibits the 
phenotype of the gene2 single mutant (gene2 is epistatic to gene1). If 
gene1 and gene2 function in parallel pathways leading to P (EM 3), the 
double mutant exhibits a novel, more extreme level of P expression, Z, 
with associated relative risk Φab. Finally, if gene1 and gene2 act at the 
same step in the pathway leading to P (EM 4), the observed phenotype 
can be either one of the phenotypes of the single mutants or a novel 
phenotype.

To simulate the EM scenarios in Table 1, in terms of the contributing 
locus genotypes, we referred to classical genetics material [14]. In each 
of the models, there are either two or three possible phenotypes. In 
our scenarios, there are only two phenotypes (a positive or negative 
diagnosis), but the risk of a diagnosis depends on the specific pairings of 
the genotypes. Table 2 outlines the expected risks associated with each 
possible combination of the wild-type (A and B) and mutant (a and b) 
alleles of gene1 and gene2 for EM1, taking into account the mode of 
inheritance (MOI) acting at each locus. Since EM2 is the complement 
to EM1 and EM3 and EM4 are subsumed by EM1, we limited our 
analysis to EM1. We used this table to generate synthetic datasets, 
representing the various scenarios and then examined our ability to 
link (associate) the phenotypes with the contributing genotypes.

Generation of synthetic SNP data

The data generation method we employed is applicable only 
to autosomal genes. Furthermore, because our simulation process 
assumed epistatic behaviors involving two interacting loci, we 
expect that the findings would apply to genes exhibiting these types 
of interactions. We began generating data by considering disease 
penetrance. We define P as the prevalence of a specific trait due to 
non-genetic factors. We designate a as the risk allele and A as the allele 
without risk for gene1. Similarly, we designate b as the risk allele and B 
as the allele without risk for gene2. Following the procedure of Iles [15], 
we can then define the risk of disease as the ratio of the probability of a 
case given a and /or b divided by the probability of a case given no risk 
allele, which is P. 

Ψ = Pr (case /a, b) / P                     (1) 

Generating the synthetic dataset was straightforward, using the 
relationships between P and risk for the different epistatic categories. 
Initially, we assigned values to the following variables:

•	 N = the target number of cases and controls in a given 
experiment,

•	 P = the disease prevalence in subjects without genetic risk of a 
diagnosis,

•	 Φa,Φb = the relative risks for each interacting loci, and 

•	 G = {g1, g2, g3}, a set of genotype distributions obtained from 
actual SNP data [16]. 

Our general strategy was to randomly select a pair of genotypes and 
assign a relative risk (Φa, Φb) based on Table 2. Using the prevalence (P) 
assumption, we then assigned a case or control code (1, 0). A detailed 
description of the process follows:

1. Using the master genotype distribution G, draw at random, a 
genotype (g1, g2 or g3) for gene1.

2. Repeat this process for gene2; i.e., draw at random, a genotype 
(g1, g2 or g3) for gene2.

3. Using Table 2, select the risk value ¥ of a case for the epistatic 
model being considered.

4. Based on ¥ and P, define the probability of a case to be:                            
x = ¥ * P.                                                                                         (2)

5. Using the estimate of x from equation (2), assign a case (0) 
or control (1) designation at random. Note that, using the 
twelve different EM/MOI combinations outlined in Table 2 
for EMs 1-3, cases should be linked to both genetic loci, and 
this association should be identifiable via appropriate statistical 
procedures. Disease risk depends on specific and unknown 
disease mechanisms. A relative risk of 1.7 is considered strong 
and is associated with positive replication [17], but a risk of 1.3 
is considered to be a realistic assumption for complex diseases 
[18]. However, many instances of risk < 1.1 are reported in 
the literature. We limited our focus to a relative risk range of 
1.10 to 1.20 and were particularly interested in cases with low 
relative risk. Note that, implicit in equation (2) is a definition 
of prevalence as the proportion of cases that are present where 
no genetic risk is assumed. 

6. Continue the process until n1 cases and n2 controls have been 
generated (note that in this example n1= n2, but the procedure 
can be tailored to specific n1/n2 targets).

Phenotype of gene1 single mutation Phenotype of gene2 single mutation Phenotype of gene1 gene2 double mutation

Model 1 GENE1 GENE2
→ → X (Φa) Y (Φb) X (Φa)

Model 2 GENE2 GENE1
→ → X (Φa) Y (Φb) Y (Φb)

Model 3

GENE1
→
GENE2
→

X (Φa) Y (Φb) Z (Φab)

Model 4 GENE1, GENE2
→ X (Φa) Y (Φb) X (Φa), Y (Φb), or Z (Φab)

Models 1-4 derived from Anthony Michels, CV (2002) Genetic techniques for biological research: a case study approach. John Wiley and Sons. (http://www.amazon.com/
Genetic-Techniques-Biological-Research-Approach/dp/0471899194)

Table 1: Epistatic Models (Ems) for Substrate-Dependent Pathways.
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Statistical models

Using the assumptions presented in Table 2, we generated 1,000 
replicates of genotypic and phenotypic data for each MOI pair for 
EM 1, using different sample sizes and risks. We then investigated the 
power of different statistical models to detect genotype-phenotype 
associations. We analyzed models that test each gene independently 
for association with the phenotype, and models that test pairs of genes 
with and without interaction terms for association. 

Single-gene Methods - Cochran-Armitage Trend Test: The 
Cochran-Armitage (CA) trend test is often used as a genotype-based 
test for case-control genetic association studies, as described in Purcell 
et al. [19]. More generally, it is used in categorical data analysis, to detect 
the presence of an association between a variable with two categories 
(e.g., a diagnosis) and a variable with k categories (e.g., a genotype). The 
CA trend test modifies the chi-square test, to incorporate a suspected 
ordering in the effects of the k categories of the second variable. For 
example, one could order the number of mutated alleles as “zero,” 
“one,” and “two” and conjecture that the allele effect will not become 
smaller as the dose increases.

As described in Zheng and Gastwirth [20], the CA trend test has 
three flavors. Using the notation in Table 3 below to define the 2x3 table 
of case-control counts stratified by genotype, a test statistic (T2(x)) for 
the three variations of the CA trend methods can be defined as:

T2(x) = n [Σ0,1,2 {xi (s ri - r si)}]
2 / [r s (Σ0,1,2 n {xi xi ni } – {Σ0,1,2 (xi ni)

2 })]. (3)

The variables ri, si and ni in equation (3) are defined in Table 3. The 
variable xi represents the specific test, namely x0 = 0, x2 = 1 and x1 = .5.

Under the null hypothesis of no association, T2(x) has an 
asymptomatic χ2 distribution with 1 degree of freedom. We applied the 
above test to both gene1 and gene2.

Two-gene Models – Pearson Test: The two-gene, case-control test 
is derived from the classical case-control test of epidemiology described 
by Jewell [21]. As with all of the tests, this test compares subjects who 
have a condition (the “cases”) with subjects who do not have the 
condition, but are otherwise similar (the “controls”). As in the CA 
test described above, the Pearson Chi Square test is used in categorical 
data analysis, when testing for the presence of an association between 
a variable with two categories (e.g., a positive or negative diagnosis) 
and two variables with k categories (e.g., three genotypes). For this 
test, the columns are the nine combinations of genotypes and the rows 
are the two case-control designations. The central idea is to compute 
the theoretical frequencies for all eighteen cells from the marginal 
totals, and then test for statistically significant differences between the 
theoretical and observed frequencies. This test also uses a χ2 test with 
(nr-1) * (nc-1) = 8 degrees of freedom.

1. Two-gene Models - The method of Wu et al. [9], as refined by 
Ueki et al. [10] 

Wu et al. [9] developed two novel statistics, refined by Ueki et 
al. [10], designed to test interactions between linked or unlinked loci 
without including the influence of main effects. 

The 2-locus linked test, TIH linked, is defined as:
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The second test, TIH unlinked, assumes that the two loci are 
unlinked and is defined as:
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Epistatic Model 1

MOI
gene1 D D R R
gene2 D R D R

gene1 gene2 Risk (¥) Risk (¥) Risk (¥) Risk (¥)
AA BB 1 1 1 1
AA Bb Φb 1 Φb 1
AA bB Φb 1 Φb 1
AA bb Φb Φb Φb Φb

Aa BB Φa Φa 1 1
Aa Bb Φa Φa Φb 1
Aa bB Φa Φa Φb 1
Aa bb Φa Φa Φb Φb

aA BB Φa Φa 1 1
aA Bb Φa Φa Φb 1
aA bB Φa Φa Φb 1
aA bb Φa Φa Φb Φb

aa BB Φa Φa Φa Φa

aa Bb Φa Φa Φa Φa

aa bB Φa Φa Φa Φa

aa bb Φa Φa Φa Φa

a = risk allele for gene1
A = allele without risk for gene1 
b = risk allele for gene2
B = allele without risk for gene2

Table 2: Epistatic Model 1 depicted in terms of risk associated with various 
genotype combination.

AA – Major genotype
Aa – Heterozygote genotype 
aa – Minor genotype

Table 3: Terms defined in Equations (2).

AA Aa aa Total
Case r0 r1 r2 R
Control s0 s1 s2 S
Total n0 n1 n2 N
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Results
This study investigated the effect that poly-gene interactions have, 

on association predictions in a GWAS context. We used statistical 
models that appear in the literature to generate predictions. Some 
of the models were single-gene, inheritance-specific models; that is, 
they assumed that a single additive or recessive or dominant gene 
produced the diagnosis. Other models were inheritance agnostic and 
assumed that a pair of interacting genes produced the diagnosis. To 
implement this investigation, we fixed the risk of the upstream gene 
of EM1, gene1 to a low but detectable 1.10 risk level. Simultaneously, 
we varied the risk on the downstream gene, gene2, from 1.00 (no risk) 
to 1.20, a level that is twice as high as the risk of gene1. Note that, a no 
risk gene is inconsistent with the purpose of Table 2, which identifies 
the interactions between two genes. However, we use this scenario to 
describe an endpoint in our assessment. 

Table 4 presents a power analysis for gene1 of the simulated EM1 
data, using 6 different statistical tests when the downstream gene has 
no risk of disease (the single-gene scenario). The first three columns 
correspond to three different versions of the single-gene Cochran 
Armitage (CA) test with different inheritance assumptions: additive 
(CA-A), dominant (CA-D), or recessive (CA-R). Each test was applied 
to both the upstream and the downstream gene. The last three columns 
of Table 4 present the results for the two-gene tests.

Table 4 indicates the following:

•	 Single-gene tests work better (from a statistical power 

perspective) than two-gene tests for single-gene scenarios 
(i.e., low risk of disease for gene1, no risk for gene2), because 
the additional degrees of freedom used by the two-gene test, 
provide no benefit,when there is no additional risk of disease 
from the second interacting gene.

•	 In general, the MOI of the upstream gene determines which test 
is optimal (optimal values are boldface type in red); with the 
dominant version of the CA test being optimal for dominant 
genes, and the recessive version of the CA test being optimal 
for recessive genes. Accordingly, the commonly used additive 
CA test (CA-A) is never optimal, unless the MOI of the gene 
is additive [2].

•	 Unexpectedly, when both genes are recessive, the unlinked 
refined Wu et al. [9] test is optimal, even though the risk of the 
second locus is null.

In contrast, Table 5 presents the results for the case, in which the 
risk from the downstream gene is twice the risk of the upstream gene. 

The results in Table 5 indicate the following: 

•	 The Pearson two-gene test is optimal for all MOI submodels 
of the EM1 model, except when both genes are dominant. In 
this case, the unlinked refined Wu et al. [9] test is optimal; and

•	 The risk conveyed by gene2 has apparently masked the 
contribution of gene1 and the power to predict an association 
between gene1 and diagnosis using single-gene models is very 

MOIs/Stat Model CA-A gene1 CA-D gene1 CA-R gene1 CC TIH linked TIH unlinked
D-D 59.34 73.63 0.00 50.40 0.00 0.30
D-R 59.35 73.40 0.05 51.70 0.00 0.30
R-D 9.05 0.00 23.70 9.05 0.00 0.20
R-R 7.65 0.00 23.30 9.20 0.05 27.15

Red = Optimal Values

Table 4: Model Comparisons for EM 1, N = 12500, P=.4, Φa = 1.10, Φb = 1.00.

Red = Optimal Values

Table 5: Model Comparisons for EM 1, N = 12500, P=.4, Φa = 1.10, Φb = 1.20.

MOIs/Stat Model CA-A gene1 CA-D gene1 CA-R gene1 CC TIH unlinked TIH linked
D-D 0.20 0.45 0.00 80.87 96.56 93.31
D-R 25.45 38.15 0.00 68.65 63.05 53.35
R-D 0.00 0.00 0.00 99.95 61.90 49.50
R-R 1.65 0.05 8.35 81.75 27.30 27.25

Red = Optimal Values 

Table 6: Model Comparisons for EM 1, N = 12500, P=.4, Φa = 1.00, Φb = 1.10.

MOIs/Stat Model CA-A gene2 CA-D gene2 CA-R gene2 CC TIH unlinked TIH linked
D D 1.85 3.55 0.10 32.12 37.57 26.75
D R 0.10 0.00 0.65 1.15 11.10 8.45
R D 41.20 56.15 0.00 52.60 11.65 8.05
R R 4.20 0.00 14.65 8.10 3.95 23.90

Red = Optimal Values

Table 7: Model Comparisons for EM 1, N = 12500, P=.4, Φa = 1.20, Φb = 1.10.

MOIs/Stat Model CA-A gene2 CA-D gene2 CA-R gene2 CC TIH unlinked TIH linked
D D 2.00 4.40 0.10 95.36 38.22 26.70
D R 5.00 0.00 0.55 100.0 11.15 8.05
R D 42.90 57.80 0.00 83.50 11.45 9.50
R R 3.70 0.05 14.00 83.80 3.60 25.90
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low, below 3% in all cases except submodel (D-R), where it is 
below 30%. This finding suggests that gene1 is unlikely to be 
associated with a diagnosis using single-gene models. 

Figure 1 provides estimates of the statistical power (Y-axis) to 
predict the association between gene1 and diagnosis, given different 
risk values for gene2 (X-axis) for the dominant submodels (D-D and 
D-R) for EM1. The results presented in Figure 1 correspond to the best 
single-locus and two-locus tests. Note that, the risk value for gene1 is 
fixed (1.10). Figure 2 presents the same information for the recessive 
submodels (R-D and R-R). Both Figure 1 and Figure 2 identify the 
crossover risk, which is the risk value at which the single-gene (optimal 
model) and the two-gene model have the same power. 

These figures suggest that beyond a risk value of 1.05-1.12 
(depending on the MOI), single-gene tests are no longer as effective 
(from a power perspective) as two-gene tests. Furthermore, the power 
of two-gene tests improves as the risk of the downstream gene increases, 
whereas the power of single-gene tests progressively declines as the risk 
from gene2 increases. 

We repeated the same analysis for EM 1 with the downstream gene 
(gene2), risk fixed at 1.1. This time, we varied the risk levels of gene1 
and applied the single gene tests to gene2. Table 6 presents the results 
when the risk from the upstream gene is null (again, we acknowledge 
that a no risk gene is inconsistent with the purpose of Table 2 but this 
scenario describes an endpoint). 

Surprisingly, the results indicate that single-gene tests do not 
universally perform better (in a power sense) than the two-gene tests, 
even when there is no risk of diagnosis from gene1. Specifically, if gene1 
is recessive, the single gene tests do as well as or better than the 8df χ2 
two-gene tests, but if gene1 is dominant, the two-gene unlinked refined 
Wu et al. [9] outperforms the single gene tests.

Table 7 presents the results for the case, in which the risk from 
the upstream gene is twice the risk of the downstream gene and 
demonstrates that the two-locus, case-control test outperforms all 
single-gene tests as well as both of the refined Wu et al. [9] tests in this 
scenario. 

Figure 3 provides estimates of the power (Y-axis) to detect 
association between gene2 and disease diagnosis given different risk 
values for gene1 [1.0 (no risk) to 1.20 (double the risk of gene1)]. Note 
that the risk of gene2 is fixed at 1.10. Figure 3 presents the results for 
the dominant gene2 submodels (D-D and R-D). Figure 4 presents the 
results for the recessive gene2 submodels (D-R and R-R). Figure 3 and 4 
are consistent with the results from Figures 1 and 2, and further suggest 
that beyond risk value = 1.05, single-gene tests are no longer as effective 
from a power perspective as two-gene tests. Furthermore, the power of 
two-gene tests improves as the risk of the downstream gene increases. 
This is exactly the opposite scenario for single gene tests, which decline 
in power, as the risk of the downstream gene increases.

Discussion
In this study, we did not vary sample size (N), rather, we fixed N 

to a high value (12500) to compensate for the fact that we selected low 
risk loci for investigation. Even for this large value of N, many of the 
experiments we describe recorded low power values (Table 6). The 
relationship between sample size and power in a GWAS context has 
been reported extensively by us elsewhere [22] and demonstrated that, 
in general GWAS are dramatically underpowered- a significant reason 
being that both genotype errors and phenotype (diagnosis) errors are 
assumed to be insignificant (zero). 

Our investigation of epistatic scenarios involving low-risk loci 
indicates that for a given locus, single-locus tests are not as effective 
as two-locus tests for predicting associations, if the risk value for a 
second interacting locus exceeds 1.05- 1.12. The cross-over risk value 
varies, depending on the genetic inheritance properties of the pair of 
loci. In general, the power of two-locus tests to detect associations 
improves as the risk value of the second locus increases, whereas 
the power of single-locus tests progressively declines. Disturbingly, 
for certain inheritance models and risk values, a true association 
between a locus and phenotype can be entirely masked by a second 
interacting locus when using single-locus tests. These findings are not 
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Figure 1: Dominant Gene 1 analysis: D-D Crossover Risk = 1.07, D-R 
Crossover Risk = 1.12.
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Figure 2: Recessive Gene1 analysis: R-D Crossover risk = 1.05, R-R 
Crossover Risk = 1.07.
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Figure 3: Dominant gene2 analysis: D-D Cross over Risk = 1.0, R-D Cross 
over Risk = 1.12.
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Figure 4: Recessive gene2 analysis: R-D Cross over Risk = 1.05, R-R Cross 
over Risk = 1.07.
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unexpected and are consistent with previous findings reported by Li 
et al. [4], Culverhouse et al. [23], and Hoh et al. [24], among others. 
However, single-gene models continue to be used as the core methods 
for detecting associations in a GWAS context. Our study is significant 
in that, it provides a more exact estimate of the risk scenarios in which 
single-locus models are inferior.

Comparing the performance of the three different two-locus 
tests evaluated in this study, in most cases for EM1, the two-locus, 
case-control Pearson test is optimal. In certain scenarios (i.e. when 
both genes have a dominant MOI), the unlinked Wu et al. [9] test (in 
which cases and controls are included), as refined by Ueki et al. [10] is 
optimal. This finding is somewhat surprising, given that the modified 
Wu et al. [9] test measures interaction effects exclusively, whereas the 
two-locus, case-control test includes main effects for both loci as well 
as interaction effects.

Despite the widespread recognition that single-locus tests are likely 
to be inferior to multi-locus tests, for GWAS of many diseases and 
phenotypes, an unresolved issue is how to construct a computationally 
practical test that takes into account interactions and enhances the 
detection of associations between a specific locus and the phenotype 
of interest. Wang et al. [25] conducted an empirical comparison of five 
epistatic interaction detection methods, including a number of two-
pass methods. They indicate that each of the five methods demonstrates 
unique utilities, but no single method is optimal, being simultaneously 
the most powerful, the most scalable and having the lowest type-1 
error rate in every setting. When users want powerful results and 
are not concerned with computation cost, Wang et al. [25] cite the 
TEAM method of Zhang et al. [26] as the best performing algorithm. 
However, researchers should note that, even when limiting the number 
of interacting genes to two, n * (n-1)/2 association calculations are 
required. For n = 500,000-1,000,000, the computational requirements 
of such an analysis are daunting but readily parallelizable.
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