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INTRODUCTION
CRC is one of the most prevalent malignant tumors and the 
second leading cause of mortality worldwide [1]. Despite the 
progress made in diagnosis and therapy, CRC patients usually 
develop recurrence and metastasis, leading to dramatic decreases 
in the 5-year survival rate [2]. Therefore, there is an urgent need to 
improve the diagnosis, treatment, and prognosis for patients with 
CRC. 

Molecular characterization has great potential for improving 
understanding of tumor development and is extensively utilized 
to predict tumor diagnosis, treatment, and prognosis [3,4]. Using 

bioinformatics methods and machine learning, various types of 
biomarkers have been found to be related to the diagnosis and 
prognosis of tumors, including microRNAs [5,6], long non-coding 
RNAs [7,8], DEGs [9], DNA methylation [10,11] and others. 

DNA methylation as an important regulator of gene expression has 
been researched in various cancers, such as endometrial cancer [12], 
prostate cancer [13], and hepatocellular carcinoma [14]. Although 
the mechanism of DNA methylation is not fully understood, it is 
assumed that DNA methylation could affect the binding of the 
transcription factors to their DNA targets sites, and then alter 
the expression of downstream genes [15-17], which may promote 
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MATERIALS AND METHODS
TCGA and GTEx data acquisition

The mRNA expression (RNA-seq data from Illumina platform) 
and DNA methylation data (Illumina Human Methylation 450) of 
CRC from TCGA and the mRNA expression of normal samples 
from the GTEx were downloaded from the UCSC Xena platform 
(https://xenabrowser.net/datapages/). Subsequently, the samples 
from TCGA were divided into the normal group and the tumor 
group. 667 samples (51 normal and 616 tumor) were selected for 
DEG analysis and MDG analysis was performed on 433 samples 
(45 normal and 388 tumor), detailed information is shown in 
Table 1. We selected 307 normal samples (123 females and 184 
males) of mRNA expression data of colon tissue from the GTEx 
to provide supplementary data for normal samples from TCGA.

GEO data acquisition

We downloaded gene expression data by array (GSE21815, 
GSE28000, GSE39582, and GSE44076) and methylation data by 

nih.gov/geo/), and the sample size of each dataset can be found 
in Figure 1. Among them, GSE39582 has detailed clinical and 
phenotypic information, with a total of 566 tumor and 19 normal 
samples in Table 1. 

oncogenesis [15,18]. MethylMix, a R package that can identify 
MDGs through integrative analysis of DNA methylation and gene 
expression data from normal samples and tumor samples [19,20], 
was used to investigate the relationship between MDGs and the 
prognosis of CRC patients [21,22]. However, no studies have 
reported whether MDGs could be used as diagnostic indicators for 
CRC.

The public databases, especially TCGA and GEO, provide 
convenient access to systematic collections of sequencing data 
with detailed clinical and pathological information which have 
been applied in malignant tumor research. Meanwhile, the GTEx 
database contains a large number of gene expression samples of 
normal human patients that have been integrated with TCGA or 
GEO in various studies [23-25]. 

Based on existing literature data, we carried out studies to identify 
a set of MDGs using DNA methylation and gene expression data 
from TCGA, GEO, and the GTEx, and construct an independent 
diagnosis model using RF, SVM, and LR algorithms. Additionally, 
the MDGs, the presumed potential prognostic indicators, were 
analyzed using univariate and multivariate Cox regression analyses. 
Our findings may suggest that the potential methylation driven 
biomarkers could prompt more individualized diagnoses and 
therapies for CRC.

Table 1: Clinical information of TCGA and GEO dataset.

Sample details for DEGs from TCGA Sample details for DMGs from TCGA GSE39582  for validation

Tumor Normal Overall Tumor Normal Overall Tumor Normal Overall

(N=616) (N=51) (N=667) (N=388) (N=45) (N=433) (N=566) (N=19) (N=585)

Gender          

Female 288 (46.8%) 28 (54.9%) 316 (47.4%) 179 (46.1%) 21 (46.7%) 200 (46.2%) 256 (45.2%) 7 (36.8%) 263 (45.0%)

Male 328 (53.2%) 23 (45.1%) 351 (52.6%) 209 (53.9%) 24 (53.3%) 233 (53.8%) 310 (54.8%) 12 (63.2%) 322 (55.0%)

Age          

<=60 192 (31.2%) 14 (27.5%) 206 (30.9%) 148 (38.1%) 11 (24.4%) 159 (36.7%) 157 (27.7%) 3 (15.8%) 160 (27.4%)

>60 424 (68.8%) 37 (72.5%) 461 (69.1%) 240 (61.9%) 34 (75.6%) 274 (63.3%) 409 (72.3%) 16 (84.2%) 425 (72.6%)

Pathologic 
stage

        2

I 103 (16.7%) 8 (15.7%) 111 (16.6%) 53 (13.7%) 5 (11.1%) 58 (13.4%) 33 (5.8%) 5 (26.3%) 38 (6.5%)

II 228 (37.0%) 24 (47.1%) 252 (37.8%) 144 (37.1%) 21 (46.7%) 165 (38.1%) 264 (46.6%) 7 (36.8%) 271 (46.3%)

III 178 (28.9%) 9 (17.6%) 187 (28.0%) 119 (30.7%) 10 (22.2%) 129 (29.8%) 205 (36.2%) 5 (26.3%) 210 (35.9%)

IV 86 (14.0%) 9 (17.6%) 95 (14.2%) 52 (13.4%) 9 (20.0%) 61 (14.1%) 60 (10.6%) 0 (0%) 60 (10.3%)

Missing 21 (3.4%) 1 (2.0%) 22 (3.3%) 20 (5.2%) 0 (0%) 20 (4.6%) 4 (0.7%) 2 (10.5%) 6 (1.0%)

AJCC-T          

T1 19 (3.1%) 2 (3.9%) 21 (3.1%) 10 (2.6%) 0 (0%) 10 (2.3%) 11 (1.9%) 1 (5.3%) 12 (2.1%)

T2 104 (16.9%) 7 (13.7%) 111 (16.6%) 54 (13.9%) 5 (11.1%) 59 (13.6%) 45 (8.0%) 4 (21.1%) 49 (8.4%)

T3 421 (68.3%) 36 (70.6%) 457 (68.5%) 271 (69.8%) 37 (82.2%) 308 (71.1%) 367 (64.8%) 12 (63.2%) 379 (64.8%)

T4 69 (11.2%) 6 (11.8%) 75 (11.2%) 50 (12.9%) 3 (6.7%) 53 (12.2%) 119 (21.0%) 0 (0%) 119 (20.3%)

Missing 3 (0.5%) 0 (0%) 3 (0.4%) 3 (0.8%) 0 (0%) 3 (0.7%) 24 (4.2%) 2 (10.5%) 26 (4.4%)

AJCC-M          

M0 455 (73.9%) 35 (68.6%) 490 (73.5%) 263 (67.8%) 27 (60.0%) 290 (67.0%) 482 (85.2%) 17 (89.5%) 499 (85.3%)

M1 85 (13.8%) 9 (17.6%) 94 (14.1%) 51 (13.1%) 9 (20.0%) 60 (13.9%) 61 (10.8%) 0 (0%) 61 (10.4%)

MX 66 (10.7%) 6 (11.8%) 72 (10.8%) 66 (17.0%) 8 (17.8%) 74 (17.1%) 3 (0.5%) 0 (0%) 3 (0.5%)

Missing 10 (1.6%) 1 (2.0%) 11 (1.6%) 8 (2.1%) 1 (2.2%) 9 (2.1%) 20 (3.5%) 2 (10.5%) 22 (3.8%)

AJCC-N          

N0 349 (56.7%) 34 (66.7%) 383 (57.4%) 211 (54.4%) 28 (62.2%) 239 (55.2%) 302 (53.4%) 12 (63.2%) 314 (53.7%)

N1 147 (23.9%) 8 (15.7%) 155 (23.2%) 101 (26.0%) 10 (22.2%) 111 (25.6%) 134 (23.7%) 3 (15.8%) 137 (23.4%)

N2 116 (18.8%) 9 (17.6%) 125 (18.7%) 72 (18.6%) 7 (15.6%) 79 (18.2%) 98 (17.3%) 2 (10.5%) 100 (17.1%)

Missing 4 (0.6%) 0 (0%) 4 (0.6%) 4 (1.0%) 0 (0%) 4 (0.9%) 32 (5.7%) 2 (10.5%) 34 (5.8%)

genome tilling array (GSE48684 , GSE53051 , GSE77718 , and 
GSE101764 ) from the GEO database (https://www.ncbi.nlm.
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Screening DEGs, DMGs and MDGs 

We filtered out the genes with a read count of less than 10 in 
more than 50% of all the samples. The DEGs were identified by 
comparing the tumor group with the normal groups using the 
limma R package [26], with the cutoff criteria defined as | log 
2 Fold Change (FC)| >0.585 and adjusted P-value <0.001. In 
addition, the probe with the highest absolute value of delta Beta and 
adjusted P-value less than 0.001 was selected as the representative 
of gene methylation level using the ChAMP R package [27], and 
|deltaBeta| >0.3 was used to screen DMGs.

Subsequently, the tumor methylation matrix, the normal 
methylation matrix, and the tumor expression matrix with 
overlapping DEGs and DMGs were constructed to identify MDGs 
using the R package MethylMix [19,20]. Significant methylation 
events were filtered using the correlation coefficient <-0.3 and 
P-value <0.05 as the cutoff criteria, and the correlation of the 
MDGs was visualized by the corrplot R package. The unpaired t 
test statistically analyzed the differences of the MDGs between the 
tumor samples and the normal samples.

Validation of MDGs using GEO datasets

To validate the MDGs, the gene expression profiling datasets 
(GSE21815, GSE28000, GSE39582, and GSE44076) were 

separately analyzed by the online software GEO2R (http://www.
ncbi.nlm.nih.gov/geo/geo2r/), and the expression value of each 
MDG was obtained. The methylation value of each MDG in 
the gene methylation profiling datasets (GSE48684, GSE53051, 
GSE77718, GSE101764) was calculated using the ChAMP R 
package. 

Identification and validation of diagnosis biomarkers 

The mRNA expression datasets from TCGA and the GTEx were 
integrated and randomly divided into a training dataset and a 
validation dataset with a 3:1 ratio in tumor samples and normal 
samples; Principal Component Analysis (PCA) investigated the 
distribution of the combined samples of TCGA and the GTEx. To 
choose the optimal algorithm to build the diagnosis model, three 
different algorithms were used to evaluate the accuracy of the 10 
MDGs as an independent predictor with default parameters and 
calculate the P-value of each MDG. The chosen algorithm was used 
to further evaluate the combined indicator for diagnosis of CRC. 
The GSE39582 dataset, containing 7 of the MDGs, was analyzed 
as a validation dataset in combination with training datasets from 
TCGA and the GTEx, the Receiver Operating Characteristic 
(ROC) curve was utilized to depict the sensitivity and specificity of 
the diagnosis models using independent MDGs or the combined 
MDGs panel.

Figure 1: Clinical information of TCGA and GEO dataset.
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Identification and evaluation of prognosis biomarkers 

The mRNA expression data with OS information was selected 
to determine the prognostic biomarkers. The univariable Cox 
proportional hazards regression model was produced using the 
Survival R package, with the P-value cutoff of 0.05. Subsequently, 
Kaplan-Meier survival and multivariate Cox regression analyses 
were performed to determine independent prognostic factors; the 
coefficient of the MDGs was obtained from the multivariate Cox 
results. The risk score based on the signature of each CRC patient 
was calculated using the following formula:

MDGs risk score=∑Cox coefficient of gene χi ×Scale 
expression value of gene χi
To further evaluate the predictive efficiency of the constructed 
MDGs risk score model, we used the ROC curve to reflect the 
sensitivity and specificity of survival prediction and quantified the 
Area Under the Curve (AUC) using the survival ROC R package. 
The optimal cutoff risk score was designated at the turning point 
of the ROC curve, where the difference between true positive and 
false positive is the most significant. The patients above the cutoff 
value were in the high-risk group, while the patients below it was in 
the low-risk group. In addition, Kaplan-Meier curves were plotted 
to distinguish the two groups using the survminer R package.

Construction and validation of the nomogram model 

To improve the accuracy of the prognostic model, we constructed 
a nomogram that visualized the prognostic value of different 
patients’ characteristics by integrating risk score and clinical 
information, including age, gender, and tumor stage. This analysis 
was performed using the rms R package to plot calibration curves 
to evaluate the predicted probabilities in comparison with the ideal 
predictive line. In addition, a forest plot based on univariable Cox 
analysis illustrated the relationship between clinical information 
and OS. Moreover, the Concordance index (C-index) indicated the 
predictive accuracy of the nomogram.

RESULTS
Identification of MDGs as candidate diagnostic and 
prognostic biomarkers

The data generation and analysis workflow are shown in Figure 1. 
After merging the expression datasets and methylation datasets of 
Colon Adenocarcinoma (COAD) and Rectum Adenocarcinoma 
(READ) from TCGA, and expression datasets from TCGA and 
the GTEx, respectively, PCA showed that the normal samples and 
the tumor samples were well separated. The samples of READ 
and COAD, TCGA, and the GTEx were randomly distributed, 
which indicated that the merged data sets could be used for further 
analysis (Figure S1A and S1B). Expression and DNA methylation 
data from TCGA were separately analyzed to screen DEGs and 
DMGs by comparing normal samples and tumor samples. As a 
result, 522 DEGs (266 upregulated and 256 downregulated) were 
identified (Figure 2A and Table S1), and the detailed information 
about DMGs was shown in Table S2. 

Subsequently, R package MethylMix was used for identifying 
MDGs with a filter criterion set as Cor <-0.3, | deltaBeta | >0.3 
and adjusted P-value <0.001, and 10 MDGs were identified 
as candidate diagnostic and prognostic biomarkers. Pearson’s 
correlation test statistically analyzed the correlations between 
methylation degree and gene expression of the MDGs using the 
cor.test function of the R language (https://www.r-project.org/) 
(Figure 3) and found that the methylation degree of those 10 
MDGs was negatively correlated with their expression. The higher 
the methylation degree was, the lower the gene expression, and 
the detailed information of the MDGs is shown in Table 2. The 
correlations between each candidate biomarker, which may help 
us choose the optimal independent gene set for the diagnosis 
of CRC, were investigated using the corrplot R package (Figure 
2B). In addition, the unpaired t test was conducted to quantify 
the difference of each candidate biomarker between the normal 
samples and the tumor samples; significant difference was found 
in all the candidate biomarkers (Figure 2C).

Figure 2: Identification of candidate biomarkers. (A) Volcano plot on DEGs. The green dots represent downregulated genes, while the red dots 
represent upregulated genes. (B) The correlations between each candidate biomarker. The color of the number in the grid represents the strength of 
correlation between the corresponding genes. (C) Statistical differences of the DMGs between normal and tumor groups were compared through the 
unpaired t test. The values of P are labelled above each boxplot with asterisks. (*P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001).



Cao L, et al.

J Clin Trials, Vol.12 Iss. S16 No: 1000003 5

OPEN ACCESS Freely available online

Figure 3: Correlation between the expression and methylation degree of the ten MDGs. X-axis represents the degree of methylation and Y-axis 
represents the gene expression level.

Table 2: The information of MDGs.

Gene name Tumor_AVG1 Normal_AVG2 deltaBeta P.Value Cor3 Cor p-value4

ARHGAP20 0.56 0.13 -0.44 6.90E-17 -0.3423 3.02E-12

CLDN1 0.47 0.91 0.44 1.66E-33 -0.4262 8.90E-19

EPHX4 0.61 0.97 0.36 1.08E-19 -0.4539 2.26E-21

FAM150A 0.55 0.25 -0.34 4.76E-16 -0.4362 1.09E-19

KCNJ12 0.33 0.02 -0.31 1.21E-17 -0.4154 8.02E-18

KRT7 0.73 0.31 -0.51 1.59E-38 -0.454 2.20E-21

LY6G6D 0.40 0.76 0.32 4.07E-36 -0.3857 2.17E-15

SPTBN5 0.61 0.91 0.31 1.40E-28 -0.3836 3.16E-15

STK33 0.46 0.11 -0.36 9.67E-17 -0.5458 6.91E-32

TCN1 0.44 0.81 0.36 2.94E-26 -0.4672 1.07E-22

Moreover, we verified the gene differences and methylation 
differences of these MDGs in other datasets (4 expression GEO 
datasets and 4 methylation GEO datasets) and found that the 
trend was consistent. The significant differences of gene expression 
and methylation of these MDGs were verified in at least one other 
dataset in Table 3. The DEGs of each GEO dataset is shown in 
Figure S1C-S1F. 

Evaluation of the MDGs as candidate diagnostic biomarkers

We used three different algorithms to evaluate the performance 
of MDGs in establishing prognosis models. Among them, SVM 
algorithms performed the worst (Figure S2); RF and LR algorithms 
had similar results, which can be seen in Figure 4 and Figure S3, 
respectively. However, when using the LR algorithm to construct 
prediction models with joint MDGs, the algorithm does not 
aggregate; using the RF algorithm, the calculated P-value of each 
MDG is less than 0.0001, while in the other two algorithms, the 
P-value of SPTBN5 is greater than 0.0001 (Table 4). Therefore, the 
RF algorithm was selected to further build the diagnostic model of 
the joint MDGs. When using MDGs to build prediction models 

with the RF algorithm, 9 out of 10 MDGs revealed excellent 
performance as independent diagnostic predictors, where the Area 
Under the Curve (AUC) of CLDN1 is 0.988, EPHX4 is 0.971, 
TCN1 is 0.966, ARHGAP20 is 0.921, LY6G6D is 0.886, FAM150A 
is 0.869, KCNJ12 is 0.857, KRT7 is 0.860, and STK33 is 0.842 
(Figure 4 A-4I). Additionally, the performances of the combined 
MDGs were further assessed in samples from TCGA-GTEx and 
GEO and the outcome of the AUC was 1.0 and 0.996, respectively 
(Figure 4 K and 4L). The importance of each predictor for the 
combined predictive model is shown in Table 5. The larger the 
number of Mean Decrease Accuracy and Mean Decrease Gini, the 
more important the predictor for the model. It was found that the 
numbers of Mean Decrease Accuracy and Mean Decrease Gini 
were positively correlated with the AUC of the predictive model 
of the predictor. Moreover, unsupervised hierarchical clustering of 
the combined panels with ten makers or seven makers indicated 
that the constructed models could accurately distinguish CRC 
patients from normal controls (Figure 5A-5D). Collectively, the 
10 MDGs could be candidate biomarkers for diagnosis of CRC 
samples and 9 of them performed well as independent indicators.
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Table 3: Statistical information of expression and methylation values in MDGs.

Gene name

Expression datasets

Dataset for discovery Datasets for validation

TCGA(READ and 
COAD)

GSE44076 GSE21815 GSE28000 GSE39582

ARHGAP20 -0.75 -0.76 -1.74 -0.84 -0.90 

KCNJ12 -0.61 -0.32 -1.17 -1.04 /

STK33 -0.59 -0.01 -0.44 -1.29 -0.19 

KRT7 0.60 1.22 0.58 0.24 0.70 

SPTBN5 0.60 0.18 1.67 0.50 0.34 

CLDN1 0.77 4.92 5.06 3.14 3.98 

EPHX4 1.11 2.80 4.50 1.82 2.45 

FAM150A 1.16 1.40 1.63 1.69 /

LY6G6D 1.48 3.84 / / /

TCN1 1.56 1.91 3.42 2.20 1.61 

Gene name

Methylation datasets

Dataset for discovery Datasets for validation

TCGA GSE48684 GSE53051 GSE77718 GSE101764

KRT7 -0.51 -0.38 -0.30 -0.34 -0.32 

ARHGAP20 -0.44 -0.38 -0.29 -0.38 -0.31 

STK33 -0.36 -0.36 -0.25 -0.37 -0.26 

FAM150A -0.34 -0.34 -0.25 -0.34 -0.26 

KCNJ12 -0.31 -0.25 -0.23 -0.33 -0.23 

SPTBN5 0.31 0.30 0.22 0.21 0.23 

LY6G6D 0.32 0.17 0.27 0.19 0.23 

TCN1 0.36 0.25 0.29 0.26 0.23 

EPHX4 0.36 0.22 0.20 0.14 0.21 

CLDN1 0.44 0.22 0.35 0.23 0.31 

Figure 4: ROC of the diagnostic prediction model with candidate biomarkers using RF algorithm. (D, A-J) independent signature. (E, K, L) combined 
DMGs panel. (K) ten MDGs, (L) seven MDGs.
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Table 4: The performance of the MDGs as independent indicator using RF, LR and SVM algorithm.

Gene name
RF algorithm LR algorithm SVM algorithm

AUC P-value AUC P-value AUC P-value

CLDN1 0.988 0 0.999 0 0.978 0

EPHX4 0.971 0 0.991 0 0.959 1.55E-246

TCN1 0.966 1.18E-214 0.979 0 0.932 1.56E-129

ARHGAP20 0.921 2.12E-141 0.915 1.03E-88 0.846 9.53E-45

LY6G6D 0.886 2.32E-81 0.772 2.15E-20 0.763 3.35E-24

FAM150A 0.869 1.82E-41 0.885 1.82E-62 0.815 1.24E-32

KCNJ12 0.857 5.60E-50 0.778 1.36E-19 0.732 3.88E-15

KRT7 0.860 4.01E-44 0.858 2.12E-53 0.727 1.26E-14

STK33 0.842 1.78E-39 0.841 1.20E-39 0.721 2.96E-14

SPTBN5 0.678 3.19E-07 0.596 0.007856458 0.5 1

Table 5: The importance of diagnostic biomarkers.

Predict factor Normal Tumor Mean decrease accuracy Mean decrease Gini

CLDN1 0.29 0.10 0.17 115.72

EPHX4 0.17 0.04 0.09 87.21

TCN1 0.08 0.01 0.04 49.64

ARHGAP20 0.12 0.03 0.07 41.59

FAM150A 0.01 0.01 0.01 14.79

LY6G6D 0.05 0.00 0.02 10.32

KRT7 0.02 0.00 0.01 6.76

STK33 0.04 0.01 0.02 6.65

KCNJ12 0.06 0.00 0.02 6.58

SPTBN5 0.00 0.00 0.00 0.72

Figure 5: Unsupervised hierarchical clustering of the MDGs for use in the diagnostic prediction model in the training (A) and validation datasets (B) 
from TCGA and GTEx. (C, D) Unsupervised hierarchical clustering of seven DEGs for use in the diagnostic prediction model in the training dataset 
from TCGA and GTEx (C) and validation dataset from GEO (D).



Cao L, et al.

J Clin Trials, Vol.12 Iss. S16 No: 1000003 8

OPEN ACCESS Freely available online

Construction and evaluation of MDGs related prognostic 
model in CRC patients

Univariate Cox regression analysis revealed that 2 of the 10 MDGs 
were independent prognostic indicators of OS, as the hazard ratio 
of STK33 was 1.09 (95% CI: 1.01-1.17, P=0.021) and EPHX4 was 
0.91 (CI: 0.83-0.99, P=0.032) (Figure 6A). Subsequently, Kaplan-
Meier analyses and log-rank tests using STK33 and EPHX4 as 
independent prognostic indicators indicated that patients with 
high-risk scores suffered poor OS, with the P-value of 0.008 and 
0.047, respectively (Figure 6B and 6C). We calculated the risk 
score of each CRC patient using the formula as follows: (1.09 
× STK33)+(0.91 × EPHX4); then CRC patients (n=635) were 
categorized into the high-risk score group or the low-risk score 
group, according to the optimal cut-off value of the risk score 
obtained from the survminer R package. The results also indicated 
that high-risk score patients had a worse OS rate than low-risk score 
patients (P<0.0001) (Figure 6D). The prognostic accuracy of the 

risk score model was investigated as a continuous variable (Figure 
6E). The AUC of the prognostic model for OS was 0.569 at 3 years, 
0.633 at 4 years, and 0.626 at 5 years. 

Construction and validation of the nomogram model

In the nomogram the score for each variable can be found on the 
point scale, then used to estimate the probability of survival at 
1, 3, and 5 years by calculating the total score (Figure 7A). The 
forest plot shows that patient characteristics, including age (>60), 
tumor stage (III and IV), and risk score are associated with OS 
(P-value<0.001) (Figure 7B).

To validate the nomogram’s performance, we plotted the calibration 
curves and observed that the predictive curves were close to the 
ideal curve (Figure 7C-7E), which indicates good performance. 
Furthermore, the predictive accuracy of this nomogram (C-index: 
0.72) was higher than the risk score model (C-index: 0.57).

Figure 6: Identification and assessment of prognostic biomarkers. (A) Univariable Cox proportional hazards regression analysis of the relation 
between the candidate MDGs and OS status. (B, C) Kaplan-Meier curves indicate that two MDGs significantly related OS (B) STK33, (C) EPHX4. 
(D) Kaplan-Meier curve shows that OS in the low score group was significantly higher than that in the high score group. (E) Time-dependent ROC 
curve analysis of the prognostic biomarkers.
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DISCUSSION
Many previous studies have reported that DMGs and DEGs 
can be used as prognostic and diagnostic biomarkers for CRC 
[11,28-30]. A previous study also reported that MDGs can assist 
with determining the prognosis of CRC patients [21]. However, 
no studies researched the relationship between MDGs and the 
diagnoses of CRC patients. In this study, we investigated the 
interplay between DMGs and DEGs and chose the genes with 
negative and high correlation, namely MDGs, as candidate 
predictors for the prognosis and diagnosis of CRC. We identified 
10 MDGs that could be considered as potential diagnostic and 
prognostic predictors for CRC patients: CLDN1, EPHX4, TCN1, 
LY6G6D, FAM150A, KRT7, STK33, ARHGAP20, KCNJ12 and 
SPTBN5. Among them, STK33 and EPHX4 were correlated with 
both diagnosis and prognosis of colorectal cancer, while the others 
only performed well as diagnostic indicators of colorectal cancer. 
Consistent with our findings, various studies have demonstrated 
that STK33 is overexpressed in hypopharyngeal squamous cell 
carcinoma [31], hepatocellular carcinoma [32], and human large 
cell lung cancer [33]. STK33 hypermethylation may be a biomarker 
for the diagnosis, prognosis, and suitable treatment of CRC [34]. 
Previous studies demonstrated that EPHX4 was significantly 
upregulated in rectal cancer [35] and pseudomyxoma peritonei 
[36]. However, the pathological role and clinical significance 
of EPHX4 for CRC have rarely been reported. As a member of 
the claudin family and tight junction-related proteins, CLDN1 
was demonstrated to be associated with dysfunction or abnormal 
expression in various tumors [37,38]. In addition, a previous study 
revealed that aberrant expression of CLDN1 regulated the AMPK/
STAT1/ULK1 signaling pathways, leading to the promotion 
of proliferation and metastasis in esophageal squamous cancer 
[39]. CLDN1 was experimentally demonstrated to be remarkably 
upregulated in CRC patients and could be considered as a 
methylated diagnostic biomarker in CRC patients and normal 

control groups [40]. A growing number of studies have verified 
that the overexpression of TCN1 is associated with tumor invasion 
and metastasis in CRC [41,42] and experimentally demonstrated 
that TCN1 was significantly overexpressed in colon cancer tissues 
compared with normal controls at the mRNA and protein level, 
and could be considered as potential prognostic biomarker of colon 
cancer [43]. A previous study showed that KRT7 plays a significant 
role in tumor metastasis and is considered as a prognostic biomarker 
and potential target for therapeutic prevention of metastasis [44]. 
In addition, KRT7 was down-regulated and hypermethylated in 
CRC tissues compared with adjacent normal tissues and may lead 
to the occurrence of CRC [45]. Y6G6D belongs to a cluster of 
leukocyte antigen-6 genes, which was conspicuously overexpressed 
(around 15-fold) and considered a promising biomarker of 
immunotherapy for microsatellite stable CRC [46]. FAM150A can 
Activate Lymphoma Kinase (ALK) by binding to its extracellular 
domain [47,48]; ALK has been used as an effective biomarker in 
various human cancers, such as neuroblastoma and non-small 
cell lung cancer [49]. Additionally, the DNA methylation status 
of FAM150A was indicated to be a diagnostic and prognostic 
indicator for clear cell Renal Cell Carcinoma (ccRCC) using the 
high-performance liquid chromatography method [50]. However, 
no studies found that FAM150A was associated with CRC. To 
the best of our knowledge, there is still a lack of research about 
the relationship between ARHGAP20, KCNJ12, and SPTBN5 and 
oncogenesis, which may represent novel predictive biomarkers. 

The ROC curves were conducted to evaluate the diagnostic 
performance of each MDG as an independent indicator, and the 
results showed that the MDGs had relatively high diagnostic values 
for CRC, except SPTBN5 (set cutoff of AUC as 0.7). The AUC 
of SPTBN5 as a diagnostic indicator was 0.679 (P-value=3.19E-07) 
using the RF algorithm, 0.596 (P-value=0.000786) using the LR 
algorithm, and 0.5 (P-value=1) using the SVM algorithm. A previous 
study integrated and analyzed the expression data of CRC from 

Figure 7: Construction and validation of a nomogram. (A) Nomogram to predict the probability of OS in 1, 3 and 5 years for CRC. (B) Forest plots 
showing the associations between patient's characteristics and OS. (C-E) Calibration plot of the nomogram to predict the probability of OS at 1, 3 
and 5 years.
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the GEO and TCGA databases and constructed the diagnostic 
model using 10 hub genes; the AUC of the 10 genes were 0.900, 
0.927, 0.869, 0.863, 0.980, 0.682, 0.903, 0.790, 0.995, and 0.989 
for CCL19, CXCL1, CXCL5, CXCL11, CXCL12, GNG4, INSL5, 
NMU, PYY, and SST [51]. The results showed that the performance 
of the two models is similar, and our model integrates the GTEx 
dataset, which has a relatively large sample size and has been 
verified with the GEO dataset. The Kaplan-Meier curve of the 10 
MDGs showed that STK33 and EPHX4 were significantly related 
to the prognosis of CRC patients. The AUC of the prognostic 
model was 0.569 for 3 years, 0.633 for 4 years, and 0.626 for 5 
years. A previous study established an immune-related prognostic 
model for CRC using 9 genes, the AUC of which is 0.627 for 3 
years, 0.632 for 4 years, and 0.630 for 5 years [52]. Although our 
prognostic model is relatively poor, it was built based on fewer 
genes. Furthermore, we constructed a nomogram based on the 
multivariable Cox regression coefficients of risk score, age, gender, 
and tumor stage to further validate our findings. The C-index of 
the nomogram was significantly higher than the C-index of the risk 
score model, which was remarkably associated with OS, suggesting 
that the two MDGs could be used as prognostic indicators.

CONCLUSION
We identified 10 MDGs that could be used as potential biomarkers 
for CRC, of which 9 performed well as independent diagnostic 
predictors and 2 could be used as prognostic indicators. 
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