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Abstract

Neuron driven physiological activities such as sleep, feeding, energy consumption are controlled by light sensitive
central clock genes in the pacemaker neurons in the brain. Multiple epigenetic events including post-transcriptional
regulation, splicing, polyadenylation, mature mRNA editing and stability of translation products are the main vibrators
for circadian oscillation with the instructive role of various sets of non-coding small regulatory RNA. Here, we sum up
the basic role of small regulatory RNA and their epigenetic circuits in brain clock activity.
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What is Circadian Rhythm?
Most living organisms possess internal clock with a circadian

rhythm of 24 h approximately. The biological core clock that regulates
basic physiological activities like the asleep-wakefulness cycle,
metabolism, energy consumption, hormone secretion is maintained by
photo-regulated clock genes in pace-maker neuron [1]. The core clock
mechanism also results in several rhythmic behavioral expressions like
seasonal reproduction where animals senses spring with their internal
clock and start to show reproductive behavior (Figure 1) [2].

Figure 1: Transcriptional regulatory circuit of clock genes.

Biological rhythm can be endogenous as well as exogenous [3]. The
change in the magnitude of activity is known as amplitude. The time
span of a complete rhythmic cycle is called period. When the
environmental cues are taken from the environment, synchrony is
established and maintained. This is known as entrainment. This
entrainment mediated rhythmic behavior is called circadian rhythm
[4,5]. The biological clock is self-sustainable as well as it can exist
without environmental cues too. The rhythmic cycle is of four types
viz., ultradian, infradian, lunar and circannual rhythm [6]. An external

cue known as zeitgeber keeps a track on this biological rhythm [7]. It
regulates the behavior of the organism. Daylight is the primary cue,
which resets circadian clock [8]. Researchers have hypothesized that
biological clock is consists of time-keeping apparatus, entrainment
pathway and a core component of the biological clock [9]. They are
operated in a serial fashion where the entrainment pathway transmits
environmental cues to the timekeeping apparatus; an environment
independent oscillator. Finally, the core component activation by the
circadian oscillator is done at specific points of time in circadian
rhythm (Figure 2) [10,11].

Figure 2: The figure shows mammalian circadian clock and other
three layers of its control. (a) Suprachiasmatic nucleus possess
master circadian pacemaker. Role of Clock-Bmal1 complexes in
transcription of Per, Cry, Rev-Reba. Two negative feedback loop are
established through oscillatory activity of Clock-Bmal1 complex.
(b) Correlation between transcriptional, post-transcriptional and
post translational steps in regulation of Per gene expression. Per
proteins regulates the formation and activity of Clock-Bmal1
complex. This complex regulates the levels of per proteins at the
level of transcription (yellow). They are also regulated at post
translational level (Blue). The regulator of oscillations like
Transcription, mRNA Translation and degradation are shown in the
figure.
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Major Regulatory RNAs in Circadian Rhythm

snRNA and snoRNA
Small nuclear RNAs (snRNAs) consisting of 80 to 350 nucleotides

are found not only in human but also in other eukaryotic model
organisms like Caenorhabditis elegans, Baker’s yeast, etc. as part of
ribonucleoprotein (RNP) complexes [4]. snRNAs like U1, U2, U4, U5
and U6 are major players in RNA splicing and also involved in several
RNA-RNA and RNA-protein interactions in the canonical assembly
[12]. Less abundant snRNAs viz. U11, U12, U4 atac and U6 atac along
with U5 form a variant “minor” spliceosome termed U12-type19 [8]. A
number of small RNAs were localized to the nucleolus, which was used
for guiding the methylation and pseudo-uridylation of several other
small RNA-liker RNA, tRNA, and snRNA [13]. Moreover, due to
differential expression, snoRNA can play as regulatory RNA as it may
target a vast range of RNAs [14]. Studies have shown that diurnal
cycling noncoding RNAs like UsnoRNA host genes (USGS) encode
precursors of more than 50 box-C/D small nucleolar RNAs as well as
the key regulators of ribosomal biosynthesis. Transcriptional profiling
study of an exon shows that either period or circadian time regulates
the abundance of alternative splice isoforms for several genes [15].
However, loss of function of period alters the RNA editing frequency
moderately at different editing sites. A correlation between RNA
editing and a key circadian gene are suggested by this data [14].

microRNAs
Recent studies have suggested a role of miRNA in modulating

circadian clock. The two major miRNA viz. miRNA-132 and
miRNA-219 were thoroughly studied. Experimental data suggested
that miR-219-1 is a clock-controlled gene and CREB-regulated gene
miR132 shows light-inducible expression which requires the
involvement of ERK/MAPK cascade mechanism [16,17]. In vitro
reporter assay gives conclusive data about miRNA-132 and
miRNA-219 as positive controller of CLOCK and BMAL1-dependent
Per1 expression [18]. Experimental data proves that miRNAs present
in Supra Chaismatic Nucleus (SCN) can be photo-regulated as well as
can be controlled by the molecular clock [19]. Daily express levels of
two other miRNAs, miR-263a and miR-263b changes rigorously in
wild-type flies, whereas miR-279 targets a ligand of the JAK/STAT
pathway to influence circadian behavior [20]. In addition, oscillation
of miRNA 959-964 cluster plays a critical role in Drosophila feeding
time and circadian rhythm [21].

Long ncRNAs
Long ncRNAs (lncRNAs) are a novel family of functionally active

RNAs, which regulate gene expression by a cascade mechanism [22].
The mechanism involves recruiting epigenetic modifiers, controlling
mRNA half-life and regulating transcription factors. They are also
involved in circadian rhythm especially in vertebrates [23]. 112
lncRNAs showed differential expression of night/day in rat’s pineal
gland, the source of melatonin, among which half of this alteration
results increase in nocturnality [24,25]. Light exposure at night can
rapidly reverse the abundance of a number of lncRNAs. Organ culture
studies suggested that the expressions of lncRNAs are regulated by
norepinephrine through the involvement of cAMP [14].

Circadian Rhythms and Dynamic Post-Transcriptional
Controls

Post-transcriptional control of circadian rhythm was first
demonstrated in Drosophila [26,27]. Subsequently, the stability of
oscillating mRNA during circadian rhythm was also explained in core
pacemaker component in mammals [28,29]. However, in mice, the
stability of Per2 and Cry1 mRNAs is altered during the period and
collectively with oscillating transcription; it shows rhythmic alteration
in mRNA level [30]. Woo et al. have shown that the interaction of RNA
binding proteins Ptbp1 and Hnrpd help in the binding of 3’ UTRs,
Per2 and Cry1 mRNAs and cause prompt degradation [31]. The
cytoplasmic levels of Ptb1 and Hnrpd regulate over the circadian
rhythm and interact with decay rates of the target mRNA [32]. It has
been shown in synchronized cultured cell that the Per2 and Cry1
mRNA oscillations were readily affected during RNAi-mediated
reduction of Ptbp1 and Hrpd levels. These findings conclude that the
level of oscillation of cytoplasmic RNA-binding proteins could be a
potential candidate for the oscillating stability of targeted mRNA. It
ultimately directs the levels of oscillation of encoded proteins [33].

Generation of Cyclic Post-Transcriptional Controls
Generation of cyclical post-transcriptional controls is observed by

different mRNAs and also in different physiological systems [34,35].
Several factors are uniformly expressed which are actively involved in
RNA regulations. Surprisingly the sub-cellular localization and activity
of these factors oscillate readily. However, the molecular mechanism of
the oscillation is not known yet [36]. In Neurospora crassa several
proteins like FRQ, FRH help in the formation of FFC complex that
recruits RNA exosomes to frq mRNA, which leads to degradation of
FFC complex [37]. Along with the capacity of FFC to repress the frq
gene transcription forms the negative feedback loop, which ultimately
leads to the generation of circadian oscillations [38,39]. AtGRP7 and
AtGRP8 are RNA binding proteins present in Arabidopsis thaliana
possess circadian expression. Overexpression of AtGRP7 ablates
expression of Atgrp7 and Atgrp8 mRNAs. These two proteins can
interact with their respective pre-mRNAs. Thus their splicing pathways
towards premature termination codon-containing mRNA isoforms are
readily activated [40]. Degradation of these isoforms occurs via
nonsense-mediated mRNA decay (NMD) Pathway. As a result,
AtGRP7 and AtGRP8 negatively auto-regulates as well as cross-
regulate their synthesis. The above-said machinery probably suggests
cyclic destabilization of AtGRP7 and AtGRP8 mRNAs which mediates
circadian oscillations [41].

Role of Non-Cyclic Post-Transcriptional Controls in
Circadian Rhythms

Successive activation and repression of gene expression are
regulated by a transcriptional negative feedback loop [42]. After the
offset of transcription, mRNA decay follows exponential kinetics. If the
half-life of respective mRNA is short then the decay will be
considerably rapid with respect to the time of transcriptional
oscillations [43,44]. As a result, the mRNA will be removed before the
transcription re-commences and high level of mRNA oscillation is
produced. So it is necessary to degrade mRNA for conversion of
switches [43].

Citation: Bhadra U, Patra P, Pal-Bhadra M (2017) Non-coding Vibration in Circadian Oscillation. Adv Tech Biol Med 5: 236. doi:
10.4172/2379-1764.1000236

Page 2 of 4

Adv Tech Biol Med, an open access journal
ISSN:2379-1764

Volume 5 • Issue 3 • 1000236



Future Outlook
In retrospect, numerous fundamental small regulatory RNAs that

operates the epigenetic expression including genetic reprogramming of
genome organization. Each genome is tuned by numerous small
regulatory RNAs that coherently orchestrate the epigenetic trajectories
during brain and CNS development and differentiation. Multiple
landscapes and small regulatory RNAs are the fundamental part of
overlapping, intergenic, intronic sense-antisense, small RNAs with
interlaced exons which control promoter activities, splicing patterns,
polyadenylation sites during developmental processes.

Indeed, RNAs can fold in multiple complex forms and allosterically
responsive multi-dimensional structures that are involved in protein
bindings and other RNA-DNA duplex or triplex formations. This RNA
may interact with multiple unrelated well-characterized motifs and
functional domains of various proteins. The multiple functions of brain
development and pacemaker neurons are underway in many neuro-
genetics laboratories. The epigenetic post-transcriptional control also
acts on circadian rhythms in different angles and various ranges in the
brain.
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