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INTRODUCTION

Evaluation of hydraulic flow units can be valuable for depiction 
of correlations among geological and petrophysical properties. 
Due to the effect of diagenesis, and facies variations in the 
carbonate reservoirs, heterogeneity properties are high there 
in such reservoirs. So, considering the hydraulic flow units 
clustering in the sedimentary sequence aids in the recognition 

of premising rock intervals [1]. The hydraulic flow unit concept 
was originally introduced for the purposes of interested zones 
characterization [2]. Gunter et al., presented the hydraulic unit 
“is a stratigraphically continuous interval of similar reservoir 
process speed that honors the geologic framework and maintains 
characteristics of rock types” [3]. Martin et al., introduced trial 
to slice the non-clastic reservoir into various hydraulic units, 
each with the same range of pore throat radius and same fluid 
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flow ability [4]. Based on pore throat radius at 35% of non-
wetting fluid saturation (r35), Martin recognized four hydraulic 
performances:

1. Mega-port flow unit, where r35 is higher than 10 µm 

2. Macro-port flow unit where r35 varies between 2 and 10 µm

3. Mesport-flow unit with r35 various between 0.5 and 2 µm

4. Micro-port flow unit that has r35 less than 0.5 µm

Petro physical properties derived from Laboratory rock samples 
investigations are important to know hydraulic flow units [5]. 
Formations are sectioned into hydraulic zones according to 
their pore space and permeability model [1]. In some much 
heterogeneous zones, the relationship between core-derived and 
logging data-derived FZI is weak. This is mostly due to dissimilarity 
in minerals and fluid parameters, which cause reasonable 
relationship between logging data and suitable hydraulic zones 
to be masked [1,6]. Unfortunately core information is not always 
obtainable for all the desired targets. Different techniques have 
been declared to describe reservoir quality based on reservoir 
flow homogenous intervals [7,8]. Desouky predict permeability 
from cored interval and using the well data. The accuracy of 
predicting the permeability is not defined well due to the limited 
core data available and pore heterogeneity. He couldn’t obtain 
thrusted permeability results at all depths of well logging data. 
Nimisha use integration of 3Dseismic and well data to detect 
the hydraulic flow units in Balol formation. Characterization of 
permeability was detected based on expensive core data and is 
very hard to be thrusted due to the weak empirical relationship 
obtained between the well logging data and flow zones. So, it is 
clear from previous study that, permeability can’t be obtained 
accurately or all the depths of the wellbore. In this current 
research, Flow Zone Indicator (FZI) approach is used to slice 
the formation quality according to reservoir flow homogenous 
intervals. The artificial neural networks were widely used to 
estimate permeability and porosity by many authors [9,10], but 
was scarcely executed to recognize the homogeneous flow zones. 
Thanh and Jarot use the ANN for predicting the permeapility 
and HFU for the sandstone formation. They conclude the ability 
to predict the permeability profile by the ANN model using 
well logging data. However, they use only a limited number of 
well logging core data. Ghanim, introduce a similar study using 
191 sandstone core samples to divide the formation to different 
rock type. Then predicting the permeability in uncored interval 
using the ANN but, no well log data is used in their analysis. 
Dahlia, predict the permeability of different rock type using 
Ann. In this research, the core samples used for conventional 
HFU is not distributed well and only one well data is used for 
the training present only three HFU. The reliable Levenberg–
Marquardt train method is not used for approximation in this 
previous work. In my work, the Artificial Neural Network (ANN) 
technique based on Levenberg–Marquardt is used to determine 
flow units in uncord wells for the new carbonate reservoir in 
Zohr Egypt offshore oilfield, Mediterranean Sea. The artificial 
neural network model was designed in MATLAB software 
environment, in order to predict HFUs. Correlation between the 
results obtained by neural network approach and actual observed 

results from core and well log data proved that ANN method 
is appropriate to drive hydraulic units from logging information 
where core data is not available.

MATERIALS AND METHODS

Geological setting

The Structure framework of the Eastern Mediterranean is 
super-imposed southward on the stable African margin and 
northward on the active Alpine margin. This situation is as old 
as Late Cretaceous when the ophiolitic melanges belt of Cyprus-
Taurus was emplaced. The deep abyssal plains of the eastern 
Mediterranean are formed on top of a thick sedimentary section 
lying on a thin oceanic crust. The latter thickens gradually in 
the south direction with regard to the Africa plate. The different 
studies of 3D seismic geophysical data illustrate a highly rich 
sedimentary section incorporate the Mesozoic series. Our 
knowledge of the Cretaceous sediments of East Africa, Cyrenaica 
to Egypt, the cretaceous sediments increase in thickness to the 
north direction which may disclose a marginal environment. 
The late cretaceous folding is happening in all North African 
margins [11]. In Egypt oblique over thrusts are present in the 
south direction to the present margin studied [12]. These 
attributes importance is not understandable but happen due to 
Late Cretaceous continental collision. Vulnerability are mainly of 
Cenozoic layers, and subsurface information for older Mesozoic 
rocks coming from drilled wells, moreover, the visibility of the 
rock formation on the ground surface of different geologic ages 
are noted at distinct areas.

Hydrocarbon plays

In this section the play elements at regional scale will be 
summarized. 

Source: The results obtained post-drill Zohr-1 well confirmed 
that the Tertiary source rock is present and effective. After these 
positive results the Nile Delta Deep Waters become part of the 
hydrocarbon province proved in the Levantine Basin by the 
discoveries of Leviathan, Tamar, Dalit and Aphrodite wells.

Reservoir

The reservoir section drilled in Zohr-1 and Zohr-2 is Cretaceous 
in age and is described as an isolated shallow water carbonate 
platform. Sediment logically, this section is preliminary described 
as made of rudist and bio-oolitic facies association grading to 
tidal flat onshore and slope re-sediment debris toward the slope.

Seal

The vertical and lateral seal is represented by the thick Messinian 
Evaporitic Complex of the Rosetta Formation, which caps and 
surrounds the entire gas bearing carbonate section underneath.

Trap

The trap is represented by a 4-way dip structure closure and the 
reservoir in Zohr-3 is expected to be found at 3567 m ssl (+/-80 
m). The appraisal well is located down-dip in respect to Zohr-1 
location (Top Carbonates found at 3430 m ssl).
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 The Upper Cretaceous new carbonates Formation, the focus 
of this study, are main gas reservoir rocks in Zohr oil field. The 
dominant constituents of the formation are limestone. The 
studied Zohr field and the four wells are in Egypt’s offshore 
Mediterranean, at 4,757 feet depth, about 195 km (N Egypt) 
(Figure 1). The new discovered carbonate Formation is considered 
the chief reservoir of oilfields located in the east Mediterranean 
Sea, North Egypt. The Carbonate Formation is Upper Cretaceous 
in age (Figure 2).

Charge

Timing: Tertiary source rock is proved to be present and effective 
by Zohr-1 discovery. The biogenic gas expulsion occurred after 
the deposition of Rosetta Formation. 

Migration: The Zohr structure location represents an optimal 
migration focus for the hydrocarbons generated from the two 
surrounding basins (Levantine and Herodotus).

Figure 1: Location map of the Zohr oilfield in Mediterranean offshore, North Egypt (Society of petroleum engineer). 
Note: ( ) Eni operator; ( ) eni not operator; ( ) Gasfield; ( ) Pipeline.
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Data available and procedures

The present study is built on core sample and well-log information 
from four offshore wells in the Zohr hydrocarbon field (wells Aa, 
Bb, Cc and Dd). 

The applied techniques used in this work comprise 

1. Petrographic study of thin sections 

2. Well log and core data preparation 

3. Identification of hydraulic flow units

4. Estimation of hydraulic flow using ANN.

The petrographic study of thin sections 

A total of 65 thin sections were obtainable from two wells 
studied (A and B). Petrographic analysis of thin sections was used 
to estimate the microfacies and deposition setting of the Zohr 
carbonate reservoir. Petrographical analysis and sedimentological 
characteristics were used to the description of microfacies and as a 
foundation for the interpretation of depositional environments. 
A modified Dunham, Embry and Klovan classifications 
techniques were used to assort microfacies [13]. Depositional 
environments evaluation carried out by using components of 
facies. The quantitative analysis including grain types and size, 
grain frequency and fossil content were used as main attributes 
to define microfacies [14]. The microfacies identified in wells (Aa 
and Bb) are described below. 

Figure 2: Lithologic column shows carbonate reservoir is upper cretaceous in age.
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 Microfacies 1 (MF22): Oncoid floatstone and wackestone

This facies is mostly constituted of abundant amount of micritic 
matrix (with >50% in frequency). This microfacies also contains 
planktonic foraminifera (with 7% in frequency), ostracods are 
locally observed (2%-4%). It also includes pore filling detrital 
clay matrix. Rare amounts of non-ferroan calcite crystals (C), 
pour filling secondary silica and black pyrite crystals (Yellow 
Arrow) are detected. Furthermore, this facies formed in energy 
restricted /marine shelf lagoon environments, as reflected by 
small various skeletal fauna, lack of subaerial exposure and the 
stratigraphic position, where great variations in salt percentage 
and temperature could happen. The mean of porosity (orange 
arrow) and permeability in this microfacies are 4.93% and 0.97 
mD, respectively (Figure 3a). 

Microfacies 2 (MF23): Non-laminated homogenous 
micrite or microsparite (Crystalline calcite)

Crystalline calcite is the main component in this microfacies (with 
>50% in frequency). Also rare amounts of pore filling secondary 
silica (S) and pyrite (Yellow Arrow) (<6%), are observed. It 
include detrital clays matrix concentrated along laminae (<5%). 
Common amounts of intercrystalline, fracture, vuggy and moldic 
pore types, with moderate to good interconnectivity. In this facies 
mean of pore space percentage and permeability are 25.72% and 
1.18 mD, respectively (Figure 3b). 

Microfacies 3 (MF2): Microbioclastic peloidal calcisiltite

The skeletal planktic foraminifera are very common (<30%), 
as well as traces of ostracods are locally observed (<5%). This 
microfacies contain rare amount of non-skeletal quartz grains 

(<5%). As well as, Dominant amounts of micrite (microcrystalline 
calcite) matrix (Mi) (<50%) as well as, Minor amounts of pore 
filling detrital clays matrix (<10%). 

Other components which are present rarely include non-ferroan 
calcite and black pyrite crystals (Yellow Arrows) cement as well as 
micrite was found in matrix. The pore systems include common 
amounts of primary and secondary intragranular (within foram 
chambers) porosity, as well as, fracture porosity, with moderate 
pore interconnectivity. The mean of porosity and permeability 
are respectively 20.8% and 1.27 mD in this microfacies (Figure 
3c). 

Microfacies 4 (MF4): Planktic foraminifer’s dolo-
wackestone/packstone

In this facies, the skeletal grains is planktonic foraminfera with 
the highest frequency (<30%) as well as ostracods are locally 
observed (<5%) throughout a micritic matrix. It also contains rare 
amount of quartz grains (<5%). The mean pore space percentage 
and permeability of this microfacies are 14.64% and 4.83 mD, 
respectively (Figure 3d).

The Common amounts of non-ferroan dolomite rhombs (D) 
due to dolomitization process of limestone, in addition to rare 
amounts of non-ferroan calcite, ferroan calcite, secondary silica 
and black pyrite crystals (Yellow Arrows) are observed. The pore 
system includes primary and secondary intragranular (within 
foram chambers) porosity, as well as, fracture pore type, with 
moderate pore interconnectivity. The mean pore space percentage 
and permeability of this microfacies are 25.64% and 4.83 m D, 
respectively in Figure 3e. 

Figure 3: The main statistical parameters of studied microfacies. (a) MF22: Oncoid floatstone and wackestone. (b) MF23: 
Coastal lagoon Microsparite. (c) MF2: Microbioclastic peloidal calcisiltite. (d) MF4: Planktic foraminifera wackestone/
packstone. (e) MF3: Pelagic lime mudstone and wackestones. Blue parts indicate porosity.



6

Lala AMS OPEN ACCESS Freely available online

J Geogr Nat Disas, Vol.12 Iss.03 No:1000249

Microfacies 5 (MF3): Pelagic lime mudstone and 
wackestones 

The common components of this rock are planktonic 
foraminifera such as textularia and globigerina are abundant in 
this facies (25%). Other constituents of this facies include benthic 
foraminifera, ostracods (Blue Arrow) (9%), bryozoan (7%), and 
echinoderm (6%). Also, Rare amounts of detrital quartz grains 
are locally noticed (<10%). The micritization process was found 
in the facies. The mean pore space percentage and permeability 
of this facies are 5.85% and 1.59 MD, respectively. 

Rare amounts of non-ferroan calcite, non-ferroan dolomite and 
pyrite crystals (Yellow Arrows), in addition to Traces of secondary 
silica are locally noticed.

Common amounts of primary and secondary intragranular 
(within foram chambers) porosity, with moderate to good pore 
interconnectivity are observed (Orange Arrows). The mean pore 
space percentage and permeability of this facies are 20.57% and 
1.59 MD, respectively. 

Petrophysical data available

The measured petrophysical parameters from cores such as 
porosity and permeability using laboratory applying steps that 
are shown by authors in different previous studies (Abuseda; 
Amir and Nahla), associated with logging measurements (sonic, 
formation density, compensated neutron, total porosity and the 
spectral gamma ray information) from four wellbore (Aa through 
Dd) in the Zohr hydrocarbon field were collected for this research. 
The available well-logs data introduce a good relationship with FZI 
(Figures 4a-4e). Measurements from the wellbores Aa, Bb and Cc 
included both cylindrical core samples and logging data. While 
the fourth wellbore (Dd), provided logging data only. Logging and 
core samples information from wellbores Aa and Bb applied to 
construct the artificial neural network model (579 data points); 
data from wellbore Cc was used to test the model (150 samples) 
and readings from wellbore Dd were applied for propagation the 
created model. For calibration of logging measurements versus 
core sample information, the depth matching was carried out. 
For better acting of the neural network, all data were normalized 
between -1 and 1 [13,14]. 

Figure 4: Cross-plots showing the relationship between FZI and well-log data. (a) DT (b) PHIT (c) RHOB (d) NPHI (e) SGR.       
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Hydraulic flow units approach (HFUs) 

Effective porosity is considered as the main factor affecting on the 
ease of fluid flow in the subsurface reservoir and we can divide 
it into different units (HFU) of specific fluid moving properties 
Amaefule [15]. The HFU method is applied for definition of 
rock kind and estimation of permeability, according to realistic 
geological factors and the nature of fluid movement at the micro 
porosity size [16]. The Flow Zone Indicator (FZI) method was 
used for estimation of current hydraulic zones in this research. 
Most important properties that impact permeability are pore-
throat volume (Amir and Nahla). The pore space and throat 
are connected to geological circumstances such as mineralogy, 
cement and texture in each sedimentary facies. So, each HFU 
can represent many sedimentary facies but with similar pore 
geometry conditions. Classifying the flow unit, we assume that in 
the flow unit, communication of pores can be showed as a series 
of capillary tubes [7]. For the model contain straight cylindrical 
tube, Darcy’s equation and Poiseuille’s equation lead to the 
resulting model [17].
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Where k unit µm2,  defined as effective fraction porosity, Sgv2 is 
grain surface area, and Fsτ2 is known as Kozeny constant. 

Amaefule [15] illustrate the permeability using the effective 
porosity:
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The equation of the parameter represents the reservoir 
performance (RQI) as (Hasan Nooruddin): 
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The FZI can be computed based on the following equation:
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Or

   zlogRQI log logFZI= +ϕ  (10)

On a logarithmic chart of RQI against Øz, all zones with same 
FZI values located on a linear of element slope [15,19]. Various 
methods are introduced for determining flow units based on FZI. 
A Normal probability plot of flow zone indicator logarithm was 
used for defining flow units in this study (Figure 5). The normal 
probability plot of log FZI data in wells Aa, Bb and Cc illustrate 
six flow units for the new Carbonate reservoir in Zohr oilfield.

Figure 5: The normal probability plot of log FZI from data wells A, B and C of limestone reservoir. Every HFU changes with 
a break in slope.
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Recognizing the flow units using Artificial Neural 
Networks (ANN)

The principle object of my research is hydraulic zones prediction 
using ANN. To achieve this goal, a back propagation artificial 
neural network (BP-ANN) is used in the current research. ANN 
is an applied approach which imitates the human brain. BP-ANN 
is well known in function estimate has many advantages. A BP-
ANN is a popular training method that enters input parameters 
directly to the network and then calculates the discrepancy 
between the calculated output and the needed output from the 
training information (Zehui) and [1]. BP-ANN is fast, easy and not 
complicated nonlinear function approximation. We can control 
the accuracy of the weight estimation through going back from 
the output to hidden decreasing errors to enhance the model 
reliability. The general architecture of artificial neural networks 
is composed of entry, concealed and resulted layers of neurons. 
The concealed or hidden layers can find the spatial correlations 
between the input and output units. Among the data set from 
wellbores Aa and Bb, 70% of data was chosen for building the 
model, 15% of measurement information for testing the acquired 
model and 15% measurement information for validation. The 
five well-logs data including NPHI, DT, SGR, PHIT and RHOB 
were selected as inputs for ANN model. 

 The conversion relation from entry layer toward concealed layer 
is hyperbolic tangent sigmoid (tansig) and from concealed layer to 
exist (resulted) layer is linear (purelin).

RESULTS

In this approach, each hydraulic flow unit is distinguished from 
the other hydraulic flow unit by a change in slope line (Figure 
5). The relationship among porosity and permeability for varies 

homogenous fluid flow zones (Figure 6). In order to recognize 
hydraulic flow units which have better reservoir quality, the mean 
value of permeability, porosity and hydraulic FZI were estimated 
for each HFU (Table 1). Then the frequencies of hydraulic flow 
unit’s occurrence were computed in each microfacies (Figure 7). 
The relationship between microfacies and flow units for well Aa 
is illustrated in Figures 8a-8h. 

Density plot showing the distribution of well log data within 
each HFU are shown in Figures 9a-9e. The Schematic geometric 
shape of the neural model for the current work is represented 
in Figure 10. For better performance, where generalization stops 
progressing, as indicated by increase in the MSE, was acquired 
after 9 epoch of training. This network is constructed and based 
on Levenberg-Marquardet training algorithm (LM). The default 
mean squared error (MSE) function was used to calculate the 
error during the training and testing. The Mean Squared Error 
(MSE) is defining discrepancy among outputs and goals (Figure 
11).

There MSE function performance was 0.02. After establishing 
the optimal model, it was evaluated by using well log data from 
well Cc as input data and then FZIs data was calculated. The 
acceptable agreement between predicted and measured FZI 
with the correlation coefficient of 0.92 shows in Figures 12 and 
13a-13g.

Illustrates the correlation of FZI conducted by ANN with rock 
samples-calculated FZI for test well (well Cc), as core-derived 
FZI and FZI predicted using ANN shown in tracks (a) and (b), 
respectively in Figure 14.

Illustrates the application of the new ANN model in well Dd 
which has only well-logs data. The resulted HFUs by ANN are 
shown in track in Figures 15a-15f. 

Figure 6: Plot of permeability versus porosity for HFU in limestone reservoir, Zohr oilfield. Note: ( ) HFU1; ( ) HFU1; ( ) 
HFU1; ( ) HFU1; ( ) HFU1; ( ) HFU1.
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Table 1: Cut-offs applied on log FZI with mean permeability, porosity and FZI for six flow units identified in Zohr reservoir.

DHFU Log FZI Mean permeability (mD) Mean porosity (%) Mean (FZI)

HFU1 Log FZI ≥ 1 .489 1.92 0.69 96.52

HFU2 1.489 ≤ Log FZI ≥ 0.791 4.55 3.53 11.98

HFU3 0.791 ≤ Log FZI ≥ 0.59 22.38 6.66 5.5

HFU4 0.59 ≤ Log FZI ≥ -0.081 15.87 11.24 2.121

HFU5  -0.081 ≤ Log FZI ≥ -0.743 2.5 14.32 0.632

HFU6 -0.743 ≤ Log FZI 0.07 14.52 0.041

Figure 7: Frequency of each HFU in microfacies of limestone reservoir, Zohr oil field well 4. Note: ( ) MF3; ( ) MF4; ( ) MF 
2; ( ) MF 23; ( ) MF 22.

Figure 8: Stratigraphic section for part of the new limestone reservoir together with well logs, microfacies and HFUs from core, well A 
(a) SGR (b) Porosity (c) Preamibility (d) NPHI (e) DT (f) FZI (g) HFU (h) Microfacies. Note: ( ) MF 22; ( ) MF 3; ( ) MF 4; ( ) 
MF 2; ( ) MF 23; ( ) Uncored.
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Figure 9: Density function for well-logs data in HFUs. (a) DT, (b) NPHI, (c) PHIT, (d) RHOB and (e) SGR.

Figure 10: The Schematic architecture of the neural network in present study.
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Figure 11: Mean square error versus number of iterations performed in the stage of train, test and validation. Note: ( ) Test; ( ) 
Validation; ( ) Train.

Figure 13: Correlation of HFUs resulting from core and ANN along to core derived and predicted FZI. Tracks (a) and (b) Show FZI obtained 
from core and ANN, track (c) Shows the log FZI from core, porosity and permeability (tracks c and e), HFU obtained from (f) the core and (g) 
the ANN. Note: ( ) HFU2; ( ) HFU3; ( ) HFU4; ( ) HFU5; ( ) HFU6.

Figure 12: Correlation between core derived FZI and ANN predicted FZI at the test (well C). Note: ( ) Predicted; ( ) Measured.
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Figure 14: Cross-plot showing correlation coefficient between core derived FZI and ANN predicted FZI for the well C. Note: ( ) 
Y - T; ( ) Ft; ( ) Data.

Figure 15: The well selected for propagation of ANN model. Tracks (a) to (e) illustrate the well log data for well D (DT, NPHI, RHOB, PHIT 
and SGR). Track (f) represent the ANN calculated HFUs. Note: ( ) HFU2; ( ) HFU3; ( ) HFU4; ( ) HFU5; ( ) HFU6.
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DISCUSSION 

Several factors must be considered in understanding the 
relationship among facies and lithologic type in non-clastic rock 
(Susan MA. and Sebastian G). Considering that the diameter of 
the pores in the rock is dependent on texture and grain size. The 
FZI method could be useful in recognizing the rock type, as it 
is directly related to the pore size. Based on this technique, six 
flow units were distinguished. Average porosity and permeability 
in each HFU can be used to classify the HFUs into high and 
low reservoir quality fluid flow units. The average permeability 
for HFUs illustrated in Table 1, HFU3 has the highest reservoir 
quality, while HFU6 shows low reservoir quality in the recently 
discovered carbonate reservoir. 

Most of all the microfacies associated with high-energy 
environments had an acceptable relationship with high reservoir 
quality flow units. But occasionally the occurrence of fractures 
during the diagenetic process high reservoir quality microfacies 
in weak-energy medium (for example lagoon). Therefore, the 
reservoir quality of carbonate facies is strongly affected by 
diagenetic processes. The core-derived HFUs and microfacies at 
the well (Aa) are demonstrated in tracks (g) and (h) of Figure 8. 

To obtain the optimum value of concealed neurons through this 
study, a neural was examined with the different value of neurons 
in the concealed interval in the training and testing phase. 
Finally, a network with five neurons present in hidden layer was 
found to have the best generalization performance (Figure 10). 
So, an optimal ANN model with five neurons in the hidden layer 
and one neuron in the output layer was established based on 
the value of mean squares errors via iterations and regression 
coefficient [20-23].

 The precise correlation of FZI conducted by ANN with rock 
samples-calculated FZI for test well (well Cc), as core-derived FZI and 
FZI predicted using ANN shown in tracks (a) and (b), respectively 
(Figure 13). This emphasizes the good regression constant among 
rock samples-calculated and conducted FZI detected in Figure 14. 
This clearly indicates that the ANN approach proves successful 
for FZI prediction in recently discovered carbonate reservoir. 
For integral work, the ANN model was propagated in well Dd 
which has only well-logs data (Figure 15). The present research 
represents a legitimate relationship between predicted HFU from 
our applied ANN technique and HFU conventionally calculated 
from the core and well logging data. So, we could apply the current 
ANN approach successfully to determine flow units across the 
field where most wells have only well log data available and core 
data are absent. Our method is better than other conventional 
methods done in the previous research that completely depend 
only on the presence of core data to predict the HFUs in the 
reservoir. Future study will be done to apply our model to other 
new geological basins of different lithology and environment of 
deposition [24,25].

CONCLUSION

In the present study, we have focused on prediction of flow units 
of the new carbonate formation in Zohr oilfield by intelligent 
network system. Microfacies analysis has led to the identification 

of five sedimentary facies. These microfacies have been deposited 
in lagoon, shoal and open marine environments. So, it was 
obvious that flow units controlled by rock property such as textural 
characteristics and diagenetic feature occurred in this reservoir. 
Therefore, the petrophysical well-logs which had legitimate and 
strong relationships with FZI data were chosen for prediction of 
FZI data using our ANN technique. Also, this research illustrated 
that each microfacies within the reservoir could have several flow 
units. Because the flow units are dependent on the porosity and 
permeability, hence the diagenetic processes result in different 
types of the flow units in sedimentary facies. The output of this 
work claims that the ANN procedure is useful for prediction 
of hydraulic flow zones in the recently discovered carbonate 
reservoir. The ANN approximation was used as a beneficial 
technique for prediction of HFUs from petrophysical data in un-
cored but logged wells throughout the oil field.
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