ISSN: 2161-0398
+44 1478 350008
A G Ramm
Posters-Accepted Abstracts: J Phys Chem Biophys
Many-body electromagnetic (EM) wave scattering problems are solved asymptotically, as the size of particles tends to zero and the number of these particles tends to infinity. Electromagnetic wave scattering by many small impedance particles of an arbitrary shape is studied. This theory allows one to give a recipe for creating materials with a desired refraction coefficient. One can create material with negative refraction, that is, the group velocity in this material is directed opposite to the phase velocity. One can create a material with a desired permeability. The theory presented in this talk is developed in the monograph. Numerical results are available in papers. Papers deal with wave scattering by many small particles. Monograph deals with inverse problems. In particular, the problem of finding the location of small subsurface in homogeneities from the scattering data measured on the surface is studied. In monograph analytical formulas for the polarization tensor for bodies of arbitrary shapes are derived.