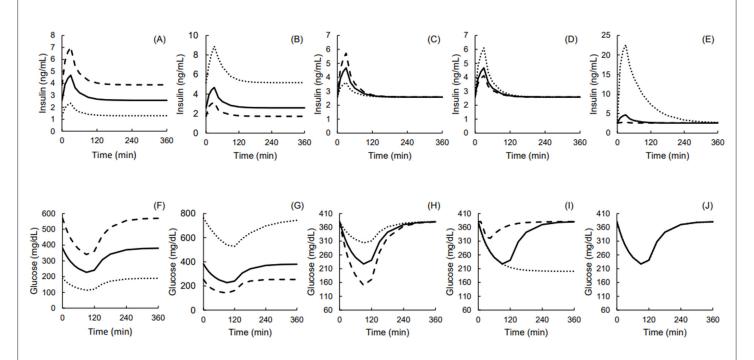


Pharmacokinetic-Pharmacodynamic Analyses of the Antidiabetic Drug, Nateglinide, in Goto-Kakizaki Rats Based on Pharmacological Mechanism

Akiko Kiriyama^{*}, Shunsuke Kimura, Shugo Yamashita

Department of Pharmacokinetics, Doshisha Women's College of Liberal Arts, Kyoto, Japan


Figure S1: Sensitivity of pharmacokinetic parameters calculated by two -(A-D) and three-compartment (E-J) pharmacokinetic models of nateglinide. The pharmacokinetic model is illustrated in Figure 1. **Note:** A and E: V_1 (distribution volume of the central compartment); B and F: k_{10} (first-order elimination rate constant); C and G: k_{12} (first-order rate constants from central compartment to peripheral compartment); D and H: k_{21} (first-order rate constants from peripheral compartment); D and H: k_{21} (first-order rate constants from peripheral compartment); Symbols: solid line, simulated profile using calculated parameters; dotted line, parameter reduced to 50% of its original value; and dashed line, parameter increased to 150% of its original value.

Correspondence to: Akiko Kiriyama, Department of Pharmacokinetics, Doshisha Women's College of Liberal Arts, Kyoto, Japan, E-mail: akiriyam@dwc. doshisha.ac.jp; Tel: +81-774-65-8505

Received: 07-Jun-2024, Manuscript No. JDMT-24-31909; **Editor assigned:** 10-Jun-2024, PreQC No. JDMT-24-31909 (PQ); **Reviewed:** 24-Jun-2024, QC No. JDMT-24-31909; **Revised:** 01-Jul-2024, Manuscript No. JDMT-24-31909 (R); **Published:** 08-Jul-2024, DOI: 10.35248/2157-7609.24.15.330

Citation: Kiriyama A, Kimura S, Yamashita S (2024) Pharmacokinetic-Pharmacodynamic Analyses of the Antidiabetic Drug, Nateglinide, in Goto-Kakizaki Rats Based on Pharmacological Mechanism. J Drug Metab Toxicol. 15:330.

Copyright: © 2024 Kiriyama A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Figure S2: Sensitivity of pharmacodynamic parameters of nateglinide following intravenous infusion to rats. The PK-PD model is illustrated in Figure 1. **Note:** A-E: effect of nateglinide on insulin profile; and F-J: effect of insulin on glucose profile.

A and F: K_{in1} and K_{inG} (zero-order rate constants of the formation of insulin and glucose, respectively); B and G: k_{outf} and k_{outG} (first-order rate constants of the degradation of insulin and glucose, respectively); C and H: E_{maxl} and I_{maxG} (the maximum drug and insulin effects on insulin and glucose levels, respectively); D and I: EC_{501} and IC_{50G} (drug and insulin concentrations at the half-maximum effect, respectively); E and J: γ_1 and γ_G (Hill constants for ordinary sigmoid E_{max} models); Symbols: Solid line, simulated profile using calculated parameters; dotted line, parameter reduced to 50% of its original value; and dashed line, parameter increased to 150% of its original value.