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Supplementary Material 
 

Appendix A 

Kinematic Model Analysis of the evolutionary history of Saturn-Iapetus System. 

A.1. Derivation Of Ω/Ω=Lom/Lod Equation Using Keplerian Approximation. 

LOM=length of month == 1P sidereal orbital period of the Satellite in question (Iapetus in the 

present case) Ωπ= /2 ; 

LOD=length of day= =2P sidereal spin period of the Planet in question (Saturn in the present 

case) ωπ= /2 . 

Kepler’s Third Law: 

 
From Eq. (A.1) we obtain: 

 



 
 

 

      Or                   

 

Let total angular momentum of Saturn-Iapetus be JT defined as follows: 

From the law of conservation of angular momentum in absence of any external torque, 

 

 

 

 
Where, 

 C=moment of Inertia of Saturn around its spin axis=0.4M_Sat R_Sat^2; 

RSat=mean radius of Saturn, ω=spin angular velocity of Saturn = 2𝜋𝜋
𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑆𝑆𝑆𝑆𝑆𝑆

; 

Spin Angular Momentum of Iapetus: 

 
Where RIap=mean radius of Iapetus and PSpinIap=spin period of Iapetus around its spin axis and 

IIap=moment of inertia of Iapetus around its spin axis. 



 
 

In most close binaries, the satellite is in captured rotation or synchronous orbit which implies that 
Satellite is tidally locked with the central planet. So Iapetus is also tidally locked with_Saturn_and 

 
Equation A.10 is further simplified: 

 
In most cases aIap >> RIap hence equation A.11 is simplified to: 

 
But this simplification will not be valid when the secondary is in sub-synchronous orbit and it is 

spiraling-in as it is in hot-Jupiter case. 

Substituting Eq. (A.3) in Eq. (A.12), we get: 

 
Rearranging the terms, we get: 

 
LOD is sidereal length of day and LOM is sidereal length of month. 

Dividing equation A.14 by equation A.3 we get: 

 
LOM/LOD is the nomenclature adopted in Earth-Moon System and today its value is 27.3 in case 

of Earth-Moon system. 



 
 

 The key equation in Planetary Satellite Dynamics is ω/Ω or LOM/LOD equation which will be 
used to arrive at the correct form of radial velocity of recession/approach. The time integral of the 
reciprocal of radial velocity will give us the evolution of satellite’s semi-major axis with time.  

Equation (A.15) equated to Unity: 

 
Eq.(A.16) has two roots: aG1 and aG2 which for Earth-Moon System is known as inner and outer 

geo-synchronous orbits and in general binary case these are known as inner and outer Clarke’s 
orbits. 

 In the region between aG1 and aG2, lom/lod is greater than Unity and within aG1, lom/lod is 
less than Unity. Beyond aG2 lom/lod is negative which makes it physically untenable and hence the 
region beyond aG2 is a forbidden zone. That is if satellite is gravitationally bounded to central body it 
can never spiral beyond aG2. 

 Inner Clarke’s Orbit is an energy maxima (Appendix B) hence it is an unstable equilibrium 
orbit whereas outer Clarke’s Orbit is an energy minima (Appendix B) of the binary system. Hence a 
secondary at aG1 tumbles out of the orbit at the slightest perturbation due to solar wind, cosmic 
particles or radiation pressure. 

 
Figure A1: In Earth-Moon System, Moon is in super-synchronous orbit. The of-setting of the line of 
bulge in Earth with respect to E-M radius vector creates a tidal drag and de-spinning of Earth leading 
to secular lengthening of day. The de-spinning of Earth leads to increased angular momentum of 
Moon. During the conservative phase of the evolution of E-M sysem by gravitational sling shot 
impulsive torque Moon is launched on an expanding spiral path around Earth. After the conservative 
phase, Earth coasts on its own towards the outer Geosynchronous orbit where it terminates its non-
keplerian journey. 



 
 

The secondary which falls long of aG1 is in super-synchronous orbit. This is the case with Moon. 
Moon orbits in 27.3 days and Earth spins in 1 day. Hence Earth’s tidal bulge leads the Earth-Moon 
radius vector as shown in Figure A.1. This results in a tidal drag on Earth which leads to secular 
lengthening of our diurnal day. Length of Day has increased from 5 hours to 24 hours over a period 
of 4.467Gy, the age of Earth and Moon. This simultaneously leads to the spiraling out of Moon. Moon 
was formed at 18,000Km just beyond Roches’ limit. Today it is at 384,400Km from Earth. 

 
Figure A2: In Mars-Phobos-System, Phobos is in sub-synchronous orbit and is speeding up Mars 
spin and Phobos is losing its angular momentum and its rotational kinetic Energy and angular 
momentum and rotational kinetic energy is correspondingly being increased in Mars so as to 
conserve the total angular momentum and total rotational energy of the system. In the process 
Phobos is launched on a gravitationally runaway collapsing spiral orbit. Here the tidal bulge in Mars 
is lagging the radius vector joining Mars and Phobos hence sub-synchronous Phobos is spinning up 
Mars. 

The secondary which falls short of aG1 is in sub-synchronous orbit. This is the case with Phobos, a 
moon of Mars. Phobos orbits in 0.319 day and Mars spins in 1.02596 day. Hence Mars’ tidal bulge 
axis lags the Mars-Phobos radius vector as shown in Figure A.2. This results in a tidal acceleration of 
Mars which leads to secular shortening or spin-up of Mars diurnal day. Length of Day i.e. spin-period 
of Mars has reduced from 1.0263d to 1.02596d. This simultaneously leads to the spiral-in of Phobos 
from 20,432Km to the present orbit of 9,377.2 Km. According to my calculations ASCOM-D-20-00010 
Phobos is losing altitude at the rate of 18.29 cm per year and in next 10My it will merge with Mars. 

 When the secondary tumbles into a super-synchronous orbit, it experiences a powerful 
impulsive torque due to gravitational sling shot effect. This is the case with Earth-Moon. 

A.2. The phenomena of gravitational slingshot. 

Planet fly-by, gravity assist is routinely used to boost the mission spacecrafts to explore the far 
reaches of our solar system [Dukla, Cacioppo & Gangopadhyaya 2004, Jones 2005, Epstein 2005, 
Cook 2005]. Voyager I and II used the boost provided by Jupiter to reach Uranus and Neptune. 
Cassini has utilized 4 such assists to reach Saturn.  



 
 

 A space-craft which passes "behind" the moon gets an increase in its velocity (and orbital 
energy) relative to the primary body. In effect the primary body launches the space craft on an 
outward spiral path. If the spacecraft flies "infront" of a moon, the speed and the orbital energy 
decreases. Traveling "above" and "below" a moon alters the direction modifying only the orientation 
(and angular momentum magnitude). Intermediate flyby orientation change both energy and angular 
momentum. Accompanying these actions there are reciprocal reactions in the corresponding moon. 

 The above slingshot effect is in a three body problem. In a three body problem, the heaviest 
body is the primary body. With respect to the primary body the secondary system of two bodies are 
analyzed. 

 In case of planet flyby, planet is the primary body and the moon- spacecraft constitute the 
secondary system.  

While analyzing the planetary satellites, Sun is the primary body and planet-satellite is the 
secondary system. But in our Keplerian approximate analysis, Sun has been neglected without any 
loss of generality and without any loss of accuracy. In fact the general trend of evolution of our Moon 
has been correctly analyzed using this approach. 

While analyzing the Sun-Planet system, galactic center is the primary body and Sun-Planet is the 
secondary system. While analyzing our solar system or exo-solar system, the galactic center has been 
neglected and we have essentially analyzed Sun-Planet as a two body problem. 

 In a similar fashion in the analysis of Planet Flyby-Gravity Assist Maneuvers, Planet is the 
primary body. The planet can be neglected and moon-spacecraft can be treated as a two body 
problem and the same results can be obtained without any loss of accuracy or generality.  

 The gravitational sling shot becomes clearer if we look at the radial acceleration and radial 
velocity profile. 

 
Figure A3: Radial Acceleration Profile of Moon (Within aG1 the Moon is accelerated inward. Beyond 
aG1 the Moon is rapidly accelerated outward under the influence of an impulsive gravitational 
torque due to rapid transfer of spin rotational energy. The maxima of the outward radial acceleration 
occurs at a1. (This is the peak of the impulsive sling shot torque.) 



 
 

 
Figure A4: Radial Velocity Profile of Moon. (Beyond aG1, Moon is rapidly accelerated to a maximum 
radial velocity,Vmax, at a2 where Sling-Shot Effect terminates and radial acceleration is zero. Then 
onward Moon coasts on it own towards the outer Geo-Synchronous Orbit aG2). 

A.3: Setting up of the time integral equation. 

From equation A.7, the angular momentum of Iapetus-Saturn system is: 

 
Substituting equation A.3 in equation A.7 we get: 

 
Tidal Torque exerted by Iapetus on Saturn is the rate of change of spin angular momentum of 

Saturn=Tidal Torque exerted by Saturn on Iapetus which is the rate of change of orbital angular 
momentum. This comes directly from conservation of the total angular momentum of Saturn-Iapetus 
System in absence of any external torque. 

Hence differentiating equation A.17 we get: 

 
 

Where 𝑚𝑚∗ = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝐼𝐼𝑚𝑚𝐼𝐼𝑟𝑟𝐼𝐼𝑟𝑟𝑚𝑚 =  𝑀𝑀𝐼𝐼𝑆𝑆𝑠𝑠

1+
𝑀𝑀𝐼𝐼𝑆𝑆𝑠𝑠
𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆

 



 
 

Since this tidal torque is a product of (ω/Ω-1) and structure function (K/aIap
M) where K=structure constant and 

M=structure exponent. 

So the empirical form of this tidal Torque is taken as: 

 
We have already seen that Eq. A.16 has two roots: aG1 and aG2 known as inner and outer Clarke’s 

orbit at triple synchrony point where ω/Ω=1. These are triple synchrony orbits where the two 
bodies are tidally interlocked and Spin Period of Saturn=Spin Period of Iapetus=Orbital Period of 
Iapetus. In all binaries systems aG1 is unstable equilibrium orbit and aG2 is stable equilibrium orbit. 
All binaries start with aG1 seperation. The secondary always tumbles out of aG1. If it tumbles long of 
aG1 the separation will increase to aG2 and no more. Secondary can never go beyond aG2. Either the 
secondary remains stay put in outer Clarke’s Orbit or it is deflected back on a collapsing spiral orbit. 
If the secondary falls short of aG1 the binary is bound to collapse to merger of the two components of 
the binary. 

Equating A.18 and A.19 we get an expression for radial velocity of Iapetus which can be receding 
or approaching depending on the orbital configuration of Iapetus. 

 
Rearranging the terms we get the expression of the radial velocity: 

 
Between aG1 and aG2, ω/Ω is greater than Unity hence radial velocity is positive and recessive.  

At less than aG1, ω/Ω is less than Unity hence radial velocity is negative and secondary 
approaches primary. 

At greater than aG2, ω/Ω is negative which is physically not possible in a prograde system hence 
system is untenable and it is a forbidden state.  



 
 

Spin to Orbital velocity equation yields a root when it is in second Mean Motion Resonance 
(MMR) position. That is: 

 
This gives a root at a2 which is gravitation resonance point and I assume that after the secondary 

undergoes gravitational sling shot impulsive torque, it attains maximum recession velocity at this 
point. After this maxima, recession velocity continuously decreases until it reaches zero magnitude at 
outer Clarke’s Orbit. 

Thus as is evident from equation A.21, recession velocity is zero at aG1 and aG2. From aG1 to a2, the 
system is in conservative phase and secondary experiences a powerful sling-shot impulsive torque 
which imparts sufficient rotational energy to the secondary by virtue of which the secondary coasts 
on its own from a2 to aG2 during which time the system is in dissipative phase, Secondary is exerting 
a tidal drag on the central body and all the rotational energy released by the central body as a result 
of de-spinning is lost as tidal heat, but not completely. This tidal heat is produced during tidal 
stretching and squeezing of the primary and it may be produced in secondary if secondary is not in 
synchronous orbit or if it is in synchronous orbit but it is in eccentric orbit. A dissipative orbit is 
never stable and the secondary spirals out from inner Clarke’s Orbit to the outer Clarke’s Orbit. 

When the secondary tumbles into sub-synchronous orbit it experiences a negative radial velocity 
which launches it on a collapsing spiral and the system is spun-up. In this collapsing phase, 
secondary exerts an accelerating torque on the central body and rotational energy is transferred to 
the primary. This rotational energy causes spin-up of the central body as well as it tidally heats up 
the central body by tidal deformations. This spiral-in is also dissipative hence unstable leading to 
ultimate merger of the two bodies. 

Since equation A.21 has a radial velocity maxima at a2 therefore the first derivative of equation 
A.21 has a zero at a2. Equating the first derivative of equation A.21 to zero we get: 

 
From equation A.23, structure exponent ‘M’ is calculated. 

We donot yet know the structure constant K. We make an intelligent guess of Vmax and calculate 
the value of ‘K’ from equation A.21equated to Vmax at semi-major axis ‘a2’. 

Using these values of ‘K’ and ‘M’ the time integral equation is set up and tested for the age of the 
system. 

 
This transit time should be of the order of 4.5Gy in the case of Iapetus because that is the age of 

Iapetus. [ Castillo- Rogez et al (2007)]. Through several iterations we arrive at the correct value of K. 

Roche’s Limit is given by the formula: 



 
 

 
Substituting the numerical values of the parameters (ρSat=710Kg/m3 and ρIap=1083Kg/m3) in 

equation A.25 we get: 

𝑚𝑚𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑒𝑒 = 1.27 × 108𝑚𝑚 

Therefore we take the initial semi-major axis as aini=1.28×108m. This initial semi-major axis 
corresponds to 12.971 hours orbital period which is the spin period of Iapetus since it is in 
synchronous orbit due to tidally locked condition. At the time of impact Iapetus was in molten stage 
and hence it assumed hydrostatic equilibrium ellipsoidal shape corresponding to 12.971 hours spin 
of Iapetus. This initial semi-major axis ensures that it is beyond Roche’s limit hence its status as an 
accreted body is ensured and it is in super-synchronous orbit (because aG1=1.1×108m) which 
ensures that it is de-spinning the whole system in the process Iapetus getting de-spun itself. 

A.4. Kinematic Model based analysis of Saturn-Iapetus System. 

Table A.1 gives the globe-orbit- spin parameters of Saturn-Iapetus system. 
parameters magnitude comments Ref 

MSat (Kg) 5.69×1026  Chaisson, et al. 

RSat (m) 60.268×106 Equatorial radius Chaisson, et al. 

DensityρSat (Kg/m3) 710   

PSpin_Sat (d) 0.43(=10.32hours)  Chaisson,et al. 

MIap (Kg) 1.8×1021  Roatsch T, et al. 

RIap (m) (735.6±3)×103  Thomes PC, et al. 

Iapetus Dynamical Properties. 

Semi-axis aIap (m) 3.5613×109  Yoder CF, et al. 

Semi-axis aIap(Rsat) 59.09   

Biaxial ellipsoid 

Radii(m) 

[(747.4±3.1)×103]× 

[(712.4±2)×103] 

 Yoder CF, et al. 

(Max-Min)radii(m) (35±3.7)×103 (a-c)/(b-c)=0.95 Thomes PC, et al. 



 
 

Density,ρIap (Kg/m3) 1083±13  Thomes PC, et al. 

Porbit (d) 79.330183 Iapetus orbiting around Saturn Yoder CF, et al. 

Orbital Rate(rad/sec) 9.1670093×10-7  Yoder CF, et al. 

Pspin_Iap (d) 79.330183 Captured rotation  Yoder CF, et al. 

Spin rate(rad/sec) 9.1670093×10-7  Yoder CF, et al. 

e (eccentricity) 0.0282  Yoder CF, et al. 

α(Inclination)degrees 7.52  Yoder CF, et al. 

Using equation A.15 and the parameters given in Table A.1 we determine the kinematic 
parameters of the Saturn-Iapetus binary system and set up spin to orbital velocity equation. 

Substituting the parameters from the Table A.1 in the relevant equations we get: 

 
Generally in close binaries the secondary will be tidally locked with the primary. This is also 

known as captured rotation and the orbit is known as synchronous orbit. This means that 
secondary’s spin angular velocity is kept equal to secondary’s orbital angular velocity. This may not 
be true in wide-orbits. 

The roots of the spin to orbital equation: 

 
Table A.2: The Kinematic Parameters of Saturn-Iapetus system for studying the evolutionary history 
of Iapetus.(Calculations have been done using Mathematica). 
parameter magnitude ref 

B(m3/2/s) 1.94857615×108 App.A 

CSat=CO(kg-m2) 8.266959631×1041 App.A 



 
 

aini(m) 1.28×108 App.A 

a2(m) 1.74448×108 App.A 

E (m-3/2) 8.680510156×10-13  App.A 

F (m-2) 2.177335304×10-21 m-2 App.A 

aG1 (m) 1.1×108  App.A 

aG2 (m) 1.58942×1017 App.A 

M(structure exponent) 

Dimensionless 

3.49997 Eq.A10 

K(structure constant) 

(N-mM+1) 

4.36391×1047 By iteration 

Age=Transit time(Gy) 4.5 Castillo 

vmax (m/yr) 14.8 By iteration 

vpresent(m/yr) 0.32 App.C 

Time –constant (yr) 1.074×1016 App.C. 

Setting up equation A.24 (the time integral equation), the transit time of Iapetus required for 
spiraling out from its initial orbit of aini=1.28 × 108 m to a multiple of 1.28×108 m is determined and 
tabulated in Table A.3. The multiple is from 1 to 28. The analysis from multiple 0 to 27.82 covers the 
entire evolutionary history from 0 to 4.5Gy. 

Using Kepler’s Third Law equation A.1, the spin of Iapetus in different evolutionary epoch is 
determined: 

Using equation A.36 the de-spun period of Iapetus is determined at multiples of 1.28 × 108 m 
from 1 to 28. 

Using equation 8 of the main text and equation A.36, the dilated values of semi-major axis of the 
synchronous orbit or triple synchrony orbit of SS are determined in the subsequent ages till the 
modern times and plotted in Figures A.5 to A.12. The orbit around Iapetus in which SS orbits in 
12.971 hours is the triple synchrony orbit at the time of inception of SS as accreted body. These triple 
synchrony orbits are being referred to as synchronous orbits, asynSS, by Levison et al. Infact these 
synchronous orbits converge to Inner Clarke’s Orbit as q approaches ‘0’ and they approach Outer 
Clarke’s Orbit as q approaches UNITY. At q=1, Outer Clarke’s Orbit falls short of convergence. 
Synchronous orbit at q=1 is 3.22RIap whereas aG2=3.92 RIap. Hence KM analysis reduces to Keplerian 
Analysis at vanishingly small ‘q’ and convergence just fall short of at q=1. So KM satisfies 
‘Correspondence Principle’ and corresponds to Keplerian Results in Correspondence Limits of ‘q’ 
approaching ‘0’. This will be shown in Appendix C. 



 
 

All the three values (the evolutionary history of aIap(×1.28 × 108 m), Pspin_Iap(d) and asyn(×RIap) of 
SS) are tabulated in Table A.3. 

Col.1- Age of Iapetus(y), Col.2- aIap(×1.28×108m),Col.3- Pspin_Iap(d),Col.4- asyn(×RIap)_q=0,Col.5- 
asyn(×RIap)_q=0.001,Col.6- asyn(×RIap)_q=0.021,Col.7- asyn(×RIap)_q=0.04,Col.8- asyn(×RIap)_q=0.2,Col.9- 
asyn(×RIap)_q=0.4,Col.10- asyn(×RIap)_q=0.8; 

Table A.3: The expansion of Orbital Radius of Iapetus (aIap)in meter, de-spinning of Iapetus in days 
and the dilation of sync Orbit of SS as multiples of Iapetus mean radius with time over its 
evolutionary history of 4.5Gy for different mass ratios of q=SS/Iapetus. 
Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7 Col.8 Col.9 Col.10 

0 1 0.54 2.55 2.56 2.57 2.59 2.71 2.86 3.11 

1.68M 1.156 0.67 2.95 2.954 2.97 2.99 3.14 3.30 3.59 

9.53M 2 1.53 5.11 5.1105 5.14 5.18 5.43 5.72 6.21 

23.06M 3 2.81 7.66 7.666 7.72 7.76 8.14 8.57 9.32 

43.36M 4 4.32 10.22 10.221 10.29 10.35 10.86 11.43 12.43 

71.71M 5 6.04 12.77 12.776 12.86 12.94 13.57 14.29 15.54 

109.11M 6 7.94 15.33 15.332 15.43 15.53 16.29 17.15 18.64 

156.45M 7 10.01 17.88 17.887 18.01 18.12 19.00 20.00 21.75 

214.56M 8 12.23 20.44 20.442 20.58 20.70 21.72 22.86 24.86 

284.18M 9 14.59 22.99 22.998 23.15 23.29 24.43 25.72 27.97 

366.01M 10 17.09 25.54 25.553 25.72 25.88 27.14 28.58 31.07 

460.72M 11 19.72 28.10 28.11 28.29 28.47 29.86 31.43 34.18 

568.95M 12 22.47 30.65 30.663 30.87 31.06 32.57 34.29 37.29 

691.29M 13 25.33 33.21 33.22 33.44 33.64 35.29 37.15 40.39 

828.32M 14 28.31 35.76 35.77 36.01 36.23 38.00 40.01 43.50 

980.61M 15 31.40 38.32 38.33 38.58 38.82 40.72 42.86 46.61 

1.15G 16 34.59 40.87 40.884 41.15 41.41 43.43 45.72 49.72 

1.33G 17 37.88 43.42 43.44 43.73 44.00 46.15 48.58 52.82 

1.53G 18 41.27 45.98 45.99 46.30 46.58 48.86 51.44 55.93 

1.75G 19 44.76 48.53 48.55 48.87 49.17 51.57 54.29 59.04 



 
 

1.99G 20 48.34 51.09 51.105 51.44 51.76 54.29 57.15 62.15 

2.24G 21 52.01 53.64 53.66 54.02 54.35 57.00 60.01 65.25 

2.52G 22 55.77 56.20 56.22 56.59 56.94 59.72 62.87 68.36 

2.81G 23 59.62 58.75 58.77 59.16 59.52 62.43 65.72 71.47 

3.12G 24 63.55 61.31 61.33 61.73 62.11 65.15 68.58 74.57 

3.45G 25 67.56 63.86 63.88 64.30 64.70 67.86 71.44 77.68 

3.8G 26 71.65 66.41 66.44 66.88 67.29 70.58 74.30 80.79 

4.17G 27 75.82 68.97 68.99 69.45 69.88 73.29 77.15 83.9 

4.5G 27.82 79.30 71.06 71.09 71.56 72.00 75.52 79.50 86.44 

4.57G 28 80.08 71.52 71.55 72.02 72.46 76.00 80.01 87 

Now we will plot the dilation of synchronous orbit semi-axis/inner Clarke’s orbit of SS in Figure 
15 to Figure 21 and in Figure A.22 we give the superposition of all the curves. 

Sub-satellite’s Synchronous Orbit Expansion with time due to the de-spinning of Iapetus for the 
values of q=0,0.001,0.021,0.04,0.2,0.4 and 0.8 respectively. 

 
Figure A.5: Sub-satellite’s Synchronous Orbit Expansion with time for q=0; 



 
 

 
Figure A.6: Sub-satellite’s Synchronous Orbit Expansion with time for q=0.001; 

 
Figure A.7: Sub-satellite’s Synchronous Orbit Expansion with time for q=0.021; 

 
Figure A.8: Sub-satellite’s Synchronous Orbit Expansion with time for q=0.04; 



 
 

 
Figure A.9: Sub-satellite’s Synchronous Orbit Expansion with time for q=0.2; 

 
Figure A.10: Sub-satellite’s Synchronous Orbit Expansion with time for q=0.4; 

 
Figure A.11: Sub-satellite’s Synchronous Orbit Expansion with time for q=0.8; 



 
 

 
Figure A.12: Superposition of the curves in Figure A.5 to A.11. The thick curve corresponding to q=0 
defines the lower limit of the range of expansion of the synchronous orbit. 

Within Solar System’s age (4.5Gy), minimum range of expansion of synchronous orbit is from 
2.55RIap to 71RIap for q=0 and maximum range is from 3.11RIap to 86.44RIap for q=0.8. 

 

Appendix B 

The two Clarke’s orbits stability and energy budget estimate of gravitational sling shot model 

In order to determine the stability of the two Clarke’s orbits we will have to analyze total Energy 
Formulation of a binary system for instance Earth-Moon System and determine its maxima and 
minima points. 

Total energy of Earth-Moon system=Rotational kinetic energy+Potential energy+ Translational 
kinetic.                                                                                                                  B.1 

Translational kinetic energy of the order of 1×108 Joules due to recession of Moon for all practical 
purposes is negligible as compared to rotational kinetic energy of the order of 1×1030 Joules. Hence 
translational kinetic energy is neglected in future analysis. 

Moon is trapped in potential well created by the Earth. 

Moon’s potential energy=-GMEarthMMoon/a 

Where,  

G=Gravitational constant=6.673 × 10-11 N-m2/Kg2; 

MEarth=Mass of the Earth=5.9742 × 1024 Kg; 

MMoon=Mass of the Moon=E/81=7.348 × 1022 Kg; 

a=Semi-major axis of Moon’s orbit around the Earth=3.844 × 108 m; 



 
 

Rotational kinetic energy of Earth-Moon system=Spin energy of the Earth+Orbital energy of the 
Earth-Moon system+Spin energy of the Moon = 
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Where,  

C=Moment of inertia around polar axis=0.3308MEarthREarth2=8.02 × 1037 Kg-m2; 

Equatorial radius of Earth=6.37814 × 106 m; 

Equatorial radius of Moon=1.738 × 106 m; 

Earth angular spin velocity=ω=2π/TE=[2π/(86400)] radians/sec; 

In this analysis we will consider all rates of rotation to be in solar days. We will consider one solar 
day as the present spin-period of Earth. Similarly while calculating Earth-Moon orbital angular 
momentum we will use present sidereal month expressed in 27.3 solar days. 

Earth-Moon orbital angular velocity=Ω=[2π/(27.3 × 86400)] radians/sec  

Where sidereal month=27.3 d; 

Since Moon is in synchronous orbit i.e. it is tidally locked with the Earth hence we see the same 
face of Moon and Moon’s orbital angular velocity=Moon’s spin angular velocity=Ω; 

Therefore total rotational kinetic energy equation 1 reduces to: 
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Similarly total angular momentum of Earth-Moon system is as follows: 
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Substituting the numerical values in equation B.4 we obtain: 

JT=3.44026 × 1034 Kg-m2/sec; 

From equation A.15, we have the following relation between length of sidereal month and length 
of sidereal day: 
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Substituting the numerical values we get: 

B=20.08884482 × 106 m3/2/s;  

E=2.13531 × 10-11 m-3/2;   

F=9.05036 × 10-16 m-2; 

If the numerical values of E and F are substituted in equation B.5 and the present value of ‘a’ is 
substituted we get LOM/LOD=27.2 we should get 27.3. This is because equation A.5 has been derived 
based on Keplarian Approximation. If LOM/LOD was derived from exact analysis we would get 
LOM/LOD in the present epoch as 27.3. 
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= 𝐸𝐸 × 𝑚𝑚1.5 − 𝐹𝐹 × 𝑚𝑚2 = 1                      B. 6 

Equation B.6 defines geosynchronous orbits of Earth-Moon system when both are tidally 
interlocked and are in triple synchrony state: 

Torbit=Tspinmoon=Tspinearth 

If equation B.6 is solved we get two roots: 

aG1=1.46177 × 107 m  and aG2=5.52656 × 108 m; 

If expressed as the ratio a/REarth we get: 

aG1=2.29 and aG2=86.65; 

Rewriting total rotational Kinetic Energy expression from equation B.3 we get: 
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Reshuffling the angular velocity terms we get: 
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Substituting equation B.6 in equation B.7 we get: 
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According to Kepler’s 3rd Law: 



 
 

𝑚𝑚3Ω2 = 𝐺𝐺(𝑀𝑀𝐸𝐸𝑏𝑏𝑜𝑜𝑏𝑏ℎ + 𝑀𝑀𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀)                                                                   B. 9 
Substituting equation B.9  in equation B.8 we obtain: 
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Therefore total energy of the E-M System is: 

𝑇𝑇𝐸𝐸 = 𝐾𝐾𝐸𝐸 + 𝑃𝑃𝐸𝐸 
Therefore: 
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To determine the stable and unstable equilibrium points in non-Keplerian journey of Moon we 
must examine the Plot of equation B.11 from ‘a’=8 × 106 to ‘a’=6 × 108 m; 

 

0.5 × (𝐺𝐺/𝑚𝑚)(((𝑚𝑚 + 𝑀𝑀)/𝑚𝑚2)(𝐶𝐶 × (𝐸𝐸 × 𝑚𝑚1.5 − 𝐹𝐹 × 𝑚𝑚2)2 + (𝑚𝑚/(1 + 1/81)) × 𝑚𝑚2 + 0.4 × 𝑚𝑚 × 𝑅𝑅2) −
2 × 𝑚𝑚 × 𝑀𝑀)/. {𝐺𝐺 → 6.673 × 10−11,𝑚𝑚 → 7.348 × 1022,𝑀𝑀 → 5.9742 × 1024,𝐶𝐶 → 8.02 × 1037,𝑅𝑅 →
1.738 × 106,𝐸𝐸 → 2.1353127743727534 × 10−11,𝐹𝐹 → 9.050361900127731 × 10−16}  
                                                                                                                                
B.12 
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6.047679999999999 × 1024(8.8782768448 ×
1034 + 7.258390243902439 × 1022𝑚𝑚2 + 8.02 × 1037(2.135312774372753 × 10−11𝑚𝑚1.5 −
9.050361900127731 × 10−16𝑚𝑚2)2)) B.13 
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True, FrameLabel → semi − majoraxis(𝑚𝑚)meter, PlotLabel → {Total Energy Plot}�                                                                                                                            
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Figure B.1: Plot of total energy in the range 1.4×107 m to 1.5×107 m around the inner geo-
synchronous orbit of a=1.46 × 107 m. X-axis–m; Y-axis -Joules 

We find energy Maxima at inner geo-synchronous orbit hence it is unstable equilibrium point. 
When Moon is at inner-geosynchronous orbit, any perturbation launches Moon on either a sub-
synchronous orbit or on extra-synchronous (or super-synchronous orbit). If it is launched on sub-
synchronous orbit then it rapidly spirals in towards the primary body and if it is launched on extra-
synchronous orbit then it spirals out from inner to outer geosynchronous orbit. In our case, Moon is 
fully formed beyond Roches’ Limit which is 18,000 Km just beyond inner Clarke’s orbit or inner Geo-
synchronous Orbit hence Moon is launched on expansionary spiral orbit towards outer Clarke’s Orbit 
or outer Geo-synchronous Orbit.  

 

Plot[1
𝑏𝑏

3.3365 × 10−11(−8.77968432 × 1047 + 1
𝑏𝑏2

6.047679999999999 × 1024(8.8782768448 ×
1034 + 7.258390243902439 × 1022𝑚𝑚2 + 8.02 × 1037(2.135312774372753 × 10−11𝑚𝑚1.5 −
9.050361900127731 × 10−16𝑚𝑚2)2)), {𝑚𝑚, 5.4 × 108, 5.6 × 108}, GridLines → Automatic, Frame →
True, FrameLabel → semimajoraxismeter, PlotLabel → {"Total Energy Plot"}]    
 B.15 



 
 

 
Figure B.2: Plot of total energy in the range 5.4 × 108 m to 5.6 × 108 m around the outer geo-
synchronous orbit of a=5.527 × 108 m. 

At outer geosynchronous orbit there is energy minima hence it is stable equilibrium point. 
Secondary body can never move beyond this orbit. Either it is stay-put in that orbit or it gets 
deflected back into a contracting spiral orbit. 

 

Plot[(1/a)3.3365`*^-11 (-8.779684319999999`*^47+1/a^26.047679999999999`*^24 
(8.8782768448`*^34+7.258720964072173`*^22 a^2+8.019999999999999`*^37 (2.1353128`*^-11 
a^1.5`-9.050361900000001`*^-16 a^2)^2)),{a,0.5` 10^7,8` 10^8},PlotStyle->Thick,GridLines-
>Automatic,Frame->True,FrameLabel->a meter,PlotLabel->{Total Energy Plot}]   
                   B.16 

 

 
Figure B.3: Plot of total energy in the range 0.5 × 107 m and 8 × 108 m along the long tidal history of 
Moon from its inception to its lock-in at outer geo-synchronous orbit. 

In a similar work by G.A.Krasinsky the results obtained are as follows: 



 
 

“Analytical consideration show that if the contemporary lunar orbit were equatorial the evolution 
would develop from an unstable geosynchronous orbit of the period 4.42 h (in the past) to a stable 
geosynchronous orbit of the period 44.8 days (in the future). It is also demonstrated that at the 
contemporary epoch the orbital plane of the fictitious equatorial moon would be unstable in the 
Liapunov’s sense, being asymptotically stable at the earlier stages of the evolution.” 

In Table B.1, a comparison of results of my analysis and that of Krasinsky is given. 

Table B.1: Comparative study of the results obtained by Krasinsky, Sharma (personal 
communication:arXiv:0805.0100 (2008)); and Darwin.  

 aG1/REarth aG2/REarth Orbital period at aG1 Orbital period at aG2 

Krasinsky 
analysis 

2.15 83.8 4.42 h 44.8 days 

BKS 
analysis 

2.29 86.65 4.8596 h 47.0739 days 

Darwin 
Analysis  

Not available 90.4 Not available 47 days 

B.1. Energy budget of gravitational sling–shot model of Earth-Moon system 

 The basic physics of gravitational sling-shot model is that when there is considerable 
differential between Earth’s spin velocity (ω) and Moon’s orbital velocity (Ω) there is oscillatory 
changes in the tidal deformation of Earth and Moon. The tidally deformed shape oscillates between 
extreme oblateness (and stretching) to extreme prolateness (or squeezing). It is this rapid oscillation 
between the two extremes which leads to dissipation of energy and tidal heating because of anelastic 
nature of Earth as well as Moon. This heating takes away energy from Moon’s rotation. Moon’s 
rotation slows down until its spin and orbital period are the same. Once spin and orbital period are 
synchronized energy loss from Moon stops. 

Tidal locking time scale of the secondary (depends on the size of the orbit and the mass of the 
parent star) is =1012 𝑦𝑦𝑟𝑟𝑚𝑚𝑟𝑟𝑚𝑚 × ( 𝑏𝑏

1𝐴𝐴𝐴𝐴
)6 × ( 𝑀𝑀

𝑀𝑀𝑆𝑆𝑆𝑆𝑠𝑠
)−2                                                               B. 17 

 

Tidal locking Radius =0.4𝐴𝐴𝐴𝐴 × ( 𝑀𝑀
𝑀𝑀𝑆𝑆𝑆𝑆𝑠𝑠

)1/3                                                                                         𝐵𝐵. 18 

In case of Earth and Moon, Earth will be treated as the host or the primary. 

 But at the geo-synchronous orbits ω=Ω and Earth and Moon are tidally interlocked and during 
the lock-in stage the two bodies are permanently deformed in oblate shape therefore at these two 
points we have the conservation of energy and the system is a conservative system. 

 On the basis of the above reasoning, we have assumed the following: 
• From aG1 to a2, Earth-Moon System is a conservative system and Moon experiences a powerful sling-shot 

impulsive torque; 



 
 

• From a2 to aG2, Earth-Moon System is a dissipative system; 
• From aG1 to 0, Earth-Moon System is a dissipative system; 

During the conservative phase from aG1 to a2 when the secondary tumbles in super-synchronous 
orbit its tidal drag slows down the spin of Earth and pushes out Moon in an expanding spiral orbit as 
shown Figure A.1 thereby increasing the orbital period of the Moon and increasing the PE of the E-M 
system.  

At the time Moon is spiraling out three things are happening: 
• The reduction in spin and orbital energy is partially transferred to increase the PE of the system; 
• Partially transferred to the translational KE of Moon; 
• Remaining is dissipated as heat. 

 

Hence we can say that: 

K×(reduction in Earth Spin Energy +reduction in orbital energy)–increase in Potential 
Energy=translational Kinetic Energy in the radial direction.    B.19 

2π2×C [1/(P1)2- 1/(P2)2]/. C→8.02×1037       B.20 

1.583084545934732 × 1039 � 1
P12

− 1
P22
�                                                                                B. 21  

1.583084545934733`*^39 (1/P12-1/P22)/.{P1→0.2023×86400, P2→0.214067×86400} B.22 

 
Spin rotational energy given up by Earth=5.54023*10^29 Joules.            B.23 

  

P1 and P2 are the spin period of the Earth when the system are in aG1 and a2 configuration. 
 
At aG1=1.46177 × 107 m, the Orbital Period of Moon is P1=0.2023 d (4.9 hr) by Kepler’s Third Law. 
 

At a2=2.40942 × 107 m, the Orbital Period of Moon is P2=0.4218 d (10.1 hr). This is 2:1 Mean Motion 
Resonance Point. 

While Moon’s orbital period increases from 0.2023 d (4.9 hr) to 0.4218 d (10.1 hr). Since a2 is 2:1 
MMR position hence Earth’s spin period is half of 0.4218 d. Therefore Earth’s spin period increases from 
0.2023 d (4.9 hr) to 0.214067d (5.14 hr). 

 
Both these slowing down and de-spinning lead to the transfer of rotational KE from the Earth and 

Moon to the Earth-Moon system. This transfer increases the PE of the system and simultaneously imparts 
the maximum radial velocity to our Moon. It is this recessionary radial velocity which enables our Moon to 
coast on its own from a2 to aG2 orbit. At aG2, radial velocity becomes zero and the spiral path terminates at 
aG2 orbital radius. Our Moon will be deflected back into collapsing spiral path due to Sun’s tidal 
interaction. 



 
 

2𝜋𝜋2(𝐼𝐼 + 𝑚𝑚∗ × 𝑥𝑥12) × 1
𝑃𝑃12
− 2𝜋𝜋2(𝐼𝐼 + 𝑚𝑚∗ × 𝑥𝑥22) × 1

𝑃𝑃22
 /. {𝑚𝑚∗ → 7.258721 × 1022, 𝐼𝐼 → 8.878277 ×

1034}                                                                                                                  B.24 

 

In the above equation, m*=MMoon/(1+MMoon/MEarth)=reduced mass of our Moon=7.258721 × 1022 

Kg. 

I=Moment of inertia of our Moon around its spin axis=0.4MMoon Rmoon2= 

8.878277 × 1034 Kg-m2. 

The parameters x1 and x2 are aG1 and a2 and P1 and P2 are the orbital period of Moon 0.2023d 
and 0.4281d at aG1 and a2. 

 

2 × [Pi]^2 ((8.87828*10^34+7.25872*10^22x1^2)/P1^2(8.87828*10^34+7.25872*10^22 
x2^2)/P2^2                                                                                        B.25 

 

2\[Pi]^2 ((1/(P1^2))(8.878277000000001`*^34+7.258721000000001`*^22 x1^2)-1/P2^2 
(8.878277000000001`*^34+7.258721000000001`*^22 x2^2))/.{x1->1.46177*10^7,x2-
>2.40942*10^7}                                                                       B.26 

2 (1.5599*10^37/P1^2-4.22279*10^37/P2^2) \[Pi]^2      B.27 

 

2 (1.5599011168063421`*^37/P1^2-4.2227870171506146`*^37/P2^2) \[Pi]^2/.{P1-
>0.2023*86400,P2->0.4281*86400}                    B.28 

 

Orbital energy given up by E-M system=3.986053971911033 × 1029 Joules.                           B.27            

 

Gain of PE=G*E*m(1/x1-1/x2)/.{G->6.673*10^-11,E->5.9742*10^24,m->7.348*10^22}                                                                                                                                                                                    
B.29  

 

2.92934*10^37 (1/x1-1/x2)                                                                                                         B.30                                                                                     

 

2.9293416733679992`*^37(1/x1-1/x2)/.{x1->1.46177*10^7,x2->2.40942*10^7} B.31 

𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 𝐢𝐢𝐈𝐈 𝐭𝐭𝐭𝐭𝐈𝐈 𝐏𝐏𝐏𝐏 𝐨𝐨𝐨𝐨 𝐏𝐏 −𝐌𝐌 𝐈𝐈𝐬𝐬𝐈𝐈𝐭𝐭𝐈𝐈𝐬𝐬 = 𝟕𝟕.𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟖𝟕𝟕𝟎𝟎𝟖𝟖𝟖𝟖𝟎𝟎𝟕𝟕𝟖𝟖𝟖𝟖 × 𝟖𝟖𝟎𝟎𝟖𝟖𝟖𝟖𝐉𝐉𝐨𝐨𝐉𝐉𝐉𝐉𝐈𝐈𝐈𝐈            B.31 

If all the rotational energy given up by Earth and Moon are conserved during conservative phase 
then: 



 
 

Rotational energy given up by Earth+Orbital energy given up by E-M 
system=Increase in the PE of E − M system +
increase in translational KE in radial direction                                                                        B. 32  

 

Solving equation B.32 we get: 

5.540225834158889`*^29+3.986053971911033`*^29-
7.88181870890782`*^29= 1.644461097162102 × 1029 = 0.5 × m × vmax2                   B.33 

 

Solving equation B.33 we get the solution for vmax: 

 

Sqrt[2*1.644461097162102`*^29/m]/.m->7.348*10^22                                     B.34 

 

 vmax=2115.64 m/sec                   B.35 

By Lunar Laser Ranging present velocity of recession is 3.8 cm per solar year and  at MMR 2:1 
from primary-centric analysis we have vmax=1.7178 m/solar year=5.4435 × 10-8 m/s. 

This velocity tells us that increase in translational KE in radial direction=1.08867 × 108 Joules. 
                                                                                           B.36 

Solve[K(5.540225834158889`*^29+3.986053971911033`*^29)-
7.88181870890782`*^29==1.08867*10^8,K]                                                   B.37 

 

{{K->0.827376}}                  B.38 

 

Equation B.38 tells us that 82.7376% of spin and orbital energy given by Earth, Moon and E-M 
system are transferred to the increase in PE and translational KE and remaining part of the rotational 
energy is lost as heat. 

 

𝑇𝑇𝐸𝐸 = 1
2

× 𝐺𝐺(𝑚𝑚+𝑀𝑀)
𝑏𝑏3

�𝐶𝐶(𝐸𝐸 × 𝑚𝑚1.5 − 𝐹𝐹 × 𝑚𝑚2)2 + � 𝑚𝑚
1+𝑚𝑚𝑀𝑀

� 𝑚𝑚2 + (0.4𝑚𝑚𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀2 )� −
𝐺𝐺𝑀𝑀𝑚𝑚
𝑏𝑏
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When equation (B.39) is solved: 

At maxima i.e. at aG1, TE=4.18477 × 1030 J.        B.40 

At minima i.e. at aG2, TE=-2.64045 × 1028 J.        B.41 

TE cuts the zero axis at 4.87914 × 108 m and at 6.2136 × 108 m.     B.42 



 
 

When our Moon recedes from 2:1MMR position i.e. from a2=2.40942 × 107 m to a=4.87914 × 108 

m:  
• Earth’s spin energy released is 4.59781 × 1030 J by solving equation B.18 while Earth de-spins from 0.214067 d 

(5.14 hrs) to 2.658 d because at a=4.87914 × 108 m, LOM/LOD=14.6785 and LOM=39.0145 d therefore 
LOD=2.658 d; 

• E-M orbital energy and Moon’s spin energy released is 5.79252 × 1029 J by solving equation B.22 while Moon 
spin and orbital period de-spins from 0.4218d (10.1 hrs) to 39.0145d ; 

• Gain in PE=1.15575 × 1030 J; 

 

Following is the energy budget equation: 

Solve[K*4.59781*10^30+5.79252*10^29=1.15575*10^30,K]   B.43 

{{K->0.125385}}                      B.44  

This means only 12.5% of Earth’s spin energy is transferred to E-M system. 88.5% of energy 
released goes for tidal heating of our Earth during its journey from a2 to a=4.87914 × 108m. This is an 
expected result. Total Energy of the system is plotted in Figure B.4   

 

 
Figure B.4: Total energy plot of E-M system with respect to ‘a’m. 



 
 

Appendix C 

Kinematic Model based analysis of the hypothetical Sub-satellite 

C.1. Calculation of the two Clarke’s Orbits for the impact-generated sub-satellite for different 
mass ratios from q=0.0001 to q=1.0   

To calculate the two Clarke’s orbits, total angular momentum (JT) of sub-satellite(SS)-Iaptus 
system, the rotational inertia or the moment of inertia (CIap) of Iapetus around its spin axis and the 
parameter B=√(G(MIap+MSS)) are calculated. From these three parameters (JT, CO and B) the 
constants E and F of ‘spin to orbital angular velocity equation’ are calculated where E and F are: 

𝐸𝐸 =
𝐽𝐽𝑇𝑇

𝐵𝐵٭𝐶𝐶𝐼𝐼𝑏𝑏𝑠𝑠
 𝑚𝑚𝑎𝑎𝑟𝑟 𝐹𝐹 =

𝑀𝑀𝑆𝑆𝑆𝑆

1 + 𝑀𝑀𝑆𝑆𝑆𝑆
𝑀𝑀𝐼𝐼𝑏𝑏𝑠𝑠

×
1
𝐶𝐶𝐼𝐼𝑏𝑏𝑠𝑠

                                                                        C. 1 

The ‘spin to orbital angular velocity equation’ is set up: 

𝐸𝐸 × 𝑚𝑚1.5 − 𝐹𝐹 × 𝑚𝑚2 =  
𝜔𝜔
𝛺𝛺
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Equating this equation to Unity yields two roots aG1 and aG2 which are called the inner and outer 
Clarke’s orbit. 

SS is at unstable equilibrium at inner Clarke’s orbit hence it tumbles out of the orbit (Appendix 
B). If it falls short of aG1 it is in sub-synchronous orbit and it spins-up the binary system and itself 
spirals-in to its certain merger with Iapetus. 

If it falls long of aG1 SS is in super-synchronous orbit and it de-spins the binary system and SS 
itself spirals out to aG2.  

In Table C.1. All the kinematic parameters, constants of equation and the two Clarke orbits semi-
major axes are tabulated for different mass ratios. 

MIap=1.8 × 1021 Kg, RIap=7.3563 × 105 m  and the synchronous orbits (given by Equation 8 in the 
main text) of SS for q=0.0001 to 0.1 to 1 is taken as given in the Table C.1. 

 I assume that SS is launched on an expanding spiral orbit from the Triple Synchrony orbit which 
is asynSS as defined by Levison et al.  

CIap=The principal moment of inertia of Iapetus around Polar Axis=0.4 MIapRIap2. 

Substituting the numerical values, CIap=3.896290778 × 1032 Kg-m2. 

Equation C.3 gives the total angular momentum at the time of gravitational sling shot launching of 
SS just beyond inner Clarke’s orbit. At the time of launching triple synchrony of 12.971 hours is 
assumed at the inner Clarke’s orbit as discussed in section 3 of main text. In this particular 
calculation the inner Clarke’s orbits are not known hence the orbit of SS around Iapetus which 
corresponds to 12.971 hours as the orbit in which SS is fully formed by accretion and this will be our 
starting point in our calculations. As we will see subsequently that ‘asynSS' is inner Clarke’s Orbit for 
q~0 to q=0.006. Again at q approaching 1, ‘asynSS' is approaching outer Clarke’s Orbit but at q=1, 
‘asynSS' falls short of aG2. So Primary-centric analysis is a valid theoretical formulation. 

We assume that: 



 
 

PspinSS=PspinIap=PorbitSS=12.971 hours. 

Since Iapetus is formed just beyond aRoche hence we assume that Iapetus is fully formed and 
placed at aIapi=1.28 × 108 m with a spin period=orbital period=12.971 hours since Iapetus is in 
captured rotation. 

We assume that SS is formed for a given ‘q’ at its respective triple synchrony Orbit. Hence for each 
value of ‘q’, we assume that Iapetus-Subsatellite system is in mutually tidally interlocked state hence 
PspinSS=PspinIap=PorbitSS=12.971 hours. 

We assume ‘aSS to be semi-major axis of the orbit in which SS is in an orbital period=spin 
period=12.971 hours. Since Iapetus has a spin period of 12.971 hours by virtue of captured rotation 
hence it is reasonable to assume that after SS is fully formed it is in triple synchrony. This is 
permissible since Roche’s Limit for SS is 2.495RIap=1.83539685 × 106 m (irrespective of MSS) and the 
orbits of SS corresponding to 12.971 hours orbital period range from 1.879 × 106 m(=2.5544 RIap) to 
2.3674 × 106 m(=3.218 RIap) for ‘q’ ranging from ‘0’ to ‘1’. So for each value of ‘q’, physically it is 
possible that SS was born in triple synchrony orbit. 

 

𝐽𝐽𝑇𝑇 = 0.4𝑀𝑀𝐼𝐼𝑏𝑏𝑠𝑠𝑅𝑅𝐼𝐼𝑏𝑏𝑠𝑠2 × �
2𝜋𝜋

𝑃𝑃𝑠𝑠𝑠𝑠𝑏𝑏𝑀𝑀𝐼𝐼𝑏𝑏𝑠𝑠
� + 0.4𝑀𝑀𝑆𝑆𝑆𝑆𝑅𝑅𝑆𝑆𝑆𝑆2 × �

2𝜋𝜋
𝑃𝑃𝑠𝑠𝑠𝑠𝑏𝑏𝑀𝑀𝑆𝑆𝑆𝑆

� +
𝑀𝑀𝑆𝑆𝑆𝑆

1 + 𝑀𝑀𝑆𝑆𝑆𝑆
𝑀𝑀𝐼𝐼𝑏𝑏𝑠𝑠

𝑚𝑚𝑆𝑆𝑆𝑆2

× �
2𝜋𝜋

𝑃𝑃𝑅𝑅𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑆𝑆𝑆𝑆
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𝑤𝑤ℎ𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑆𝑆𝑆𝑆 =    (
𝐵𝐵٭

( 2𝜋𝜋
𝑃𝑃𝑅𝑅𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑆𝑆𝑆𝑆

)2
)1/3    𝑚𝑚𝑎𝑎𝑟𝑟 𝐵𝐵٭ = �𝐺𝐺(𝑀𝑀𝐼𝐼𝑏𝑏𝑠𝑠 + 𝑀𝑀𝑆𝑆𝑆𝑆)  𝑚𝑚𝑎𝑎𝑟𝑟 𝑃𝑃𝑠𝑠𝑠𝑠𝑏𝑏𝑀𝑀𝐼𝐼𝑏𝑏𝑠𝑠 = 𝑃𝑃𝑠𝑠𝑠𝑠𝑏𝑏𝑀𝑀𝑆𝑆𝑆𝑆

= 𝑃𝑃𝑅𝑅𝑜𝑜𝑏𝑏𝑏𝑏𝑏𝑏𝑆𝑆𝑆𝑆                                          

Table C.1: The physical parameters, the kinematic parameters, the constants of equation for 
different mass ratios ranging from q=0.0001 to q=1. 

q MSS(×1017 Kg) RSS(m)† asynSS 

(×RIap) 

B*m3/2/sec JT(×1029) 

Kg-m2/s 

E(×10-10) 

m-1.5 

F(×10-14) m-2 

0.0001 1.8 35026.33 2.56 346592 0.525085 3.8883 0.046193 

0.001 18 75461.94 2.56 346747.9 0.532807 3.94371 0.461516 

0.006 108 137123.4 2.56 347612.8 0.575695 4.25055 2.75534 

0.009 162 156967.16 2.57 348130.76 0.601404 4.443376 4.12071 

0.021 378 208193.77 2.58 350194.8 0.703979 5.1594 9.50199 

0.03 540 234477.8 2.58 351734.87 0.780608 5.69595 13.4557 



 
 

0.04 720 258076.2 2.59 353438.2 0.865426 6.28442 17.7684 

0.05 900 278004.2 2.60 355133.36 0.949895 6.846488 21.9987 

0.06 1080 295423.51 2.61 356820.46 1.03401 7.43745 26.1497 

0.07 1260 311000.18 2.62 358499.62 1.11778 8.0023 30.2228 

0.08 1440 325155.64 2.62 360170.96 1.20119 8.55956 34.2206 

0.09 1620 338175.50 2.63 361834.58 1.28426 9.1094 38.145 

0.1 1800 350263.3 2.64 363490.58 1.36698 9.65198 41.998 

0.2 3600 441304 2.72 379654 2.17618 14.7115 76.9963 

0.3 5400 505167 2.79 395156 2.95598 19.1991 106.610 

0.4 7200 556008 2.86 410073 3.71077 23.2248 131.994 

0.5 9000 598941.8 2.93 424465.55 4.44427 26.8724 153.993 

0.6 10800 636471 2.99 438386 5.15955 30.2068 173.242 

0.7 12600 670030 3.05 451878 5.85915 33.2784 190.226 

0.8 14400 700526.6 3.11 464978.71 6.54518 36.1274 205.323 

0.9 16200 728577 3.16 477720 7.21941 38.7862 218.832 

1.00 18000 754619 3.22 490131 7.88335 41.2807 230.989 

Note: *B=√[G(MIap+MSS)] ; †RSS radius of SS is determined by assuming a density of Sub-
satellite=1000Kg/m3; 

I have assumed that SS is launched in an orbit of triple synchrony state of period 12.971 hours. 
Theoretically it was expected that Kinematic Model analysis will yield inner Clarke’s Orbit aG1=asynSS 
but things donot turn up quite like that. 

Table C.2: The two Clarke’s orbits semi-major axes and mean motion resonance (ω/Ω=2) semi-
major axes for q=0.0001 to q=1. 
Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7 Col.8 Col.9 

q 
asynSS 

(×RIa) 
aG1(×106)m aG1(×RIa) 

MMR 

2:1(×RIa) 
aG2(×106)m aG2(×RIa) E† F† 



 
 

0.0001 2.5545 1.8792 2.5546 4.056 708545 963221 3.88 0.046 

0.001 2.5553 1.8797 2.5553 4.068 7301.9 9926.4 3.94 0.462 

0.006 2.56 1.8822 2.559 4.135 237.67 323.1 4.25 2.755 

0.009 2.562 1.8836 2.561 4.179 115.35 156.81 4.443 4.121 

0.021 2.572 1.8884 2.567 4.38 28.746 39.078 5.159 9.502 

0.03 2.58 1.891 2.571 4.59 17.036 23.159 5.695 13.46 

0.04 2.588 1.8929 2.573 4.92 11.511 15.65 6.284 17.77 

0.05 2.596 1.8936 2.574 5.446 8.6559 11.77 6.865 22 

0.06* 2.604 1.893 2.573 4.04 (1.5) 6.9443 9.44 7.437 26.15 

0.07* 2.613 1.8907 2.57 4.44 (1.5) 5.8176 7.91 8.002 30.22 

0.08* 2.621 1.8865 2.565 4.41 (1.4) 5.0265 6.83 8.556 34.22 

0.09* 2.629 1.8801 2.556 4.07 (1.3) 4.4453 6.04 9.109 38.15 

0.1* 2.637 1.8711 2.544 3.47 (1.2) 4.0041 5.44 9.652 42 

0.2* 2.714 1.5811 2.149 2.69 (1.08) 2.5081 3.41 14.71 77 

0.3* 2.788 1.2194 1.658 1.93 (1.1) 2.3964 3.26 19.2 106.6 

0.4* 2.858 0.997 1.355 2.05 (1.3) 2.4335 3.308 23.22 132 

0.5* 2.924 0.8561 1.164 2.21 (1.5) 2.4983 3.396 26.87 154 

0.6* 2.988 0.7595 1.032 1.88 (1.6) 2.5717 3.496 30.21 173.2 

0.7* 3.049 0.6889 0.936 1.94 (1.8) 2.6486 3.601 33.28 190.2 

0.8 3.107 0.6349 0.863 1.99 2.7271 3.707 36.13 205.3 

0.9 3.164 0.5921 0.805 1.6976 2.8064 3.815 38.79 218.8 

1 3.218 0.5573 0.758 1.527 2.886 3.92 41.28 231 



 
 

Note: †E(×10-10)m-1.5, F(×10-14)m-2, *For the mass ratios q=0.06 to 0.7, the system does not 
yield REAL MMR(2:1) semi-major axes. Therefore the ratio (ω/Ω) as shown in the bracket 
is taken as the point where radial velocity=vmax is achieved by Gravitational Sling Shot 
impulsive torque. 

Table C.3: The comparative study of inner Clarke’s Orbit and the sum of Iapetus and SS radii for 
different mass ratios ranging from q=0.0001 to q=1 and its implication for the formation process. 

q 
asynSS 

(×RIa) 
aG1 (×106) m aG1 (×RIa) RSS(m)† 

(RIap+ RSS) 

(m) 

(RIap+ RSS) 

(×RIa) 

Formation 

process 

0.0001 2.5545 1.8792 2.5546 35026 770656 1.05 Core accretion 

0.001 2.5553 1.8797 2.5553 75462 811092 1.1 Core accretion 

0.006 2.56 1.8822 2.559 137123 872753 1.19 Core accretion 

0.009 2.562 1.8836 2.561 156967 892597 1.21 Core accretion 

0.021 2.572 1.8884 2.567 208194 943824 1.28 Core accretion 

0.03 2.58 1.891 2.571 234478 970108 1.32 Core accretion 

0.04 2.588 1.8929 2.573 258076 993706 1.35 Core accretion 

0.05 2.596 1.8936 2.574 278004 1E+06 1.38 Core accretion 

0.06* 2.604 1.893 2.573 295424 1E+06 1.4 Core accretion 

0.07* 2.613 1.8907 2.57 311000 1E+06 1.42 Core accretion 



 
 

0.08* 2.621 1.8865 2.565 325156 1E+06 1.44 Core accretion 

0.09* 2.629 1.8801 2.556 338176 1E+06 1.46 Core accretion 

0.1* 2.637 1.8711 2.544 350263 1E+06 1.48 Core accretion 

0.2* 2.714 1.5811 2.149 441304 1E+06 1.6 Core accretion 

0.3* 2.788 1.2194 1.658 505167 1E+06 1.69 Instability 

0.4* 2.858 0.997 1.355 556008 1E+06 1.76 Instability 

0.5* 2.924 0.8561 1.164 598942 1E+06 1.81 Instability 

0.6* 2.988 0.7595 1.032 636471 1E+06 1.86 Instability 

0.7* 3.049 0.6889 0.936 670030 1E+06 1.91 Instability 

0.8 3.107 0.6349 0.863 700527 1E+06 1.95 Instability 

0.9 3.164 0.5921 0.805 728577 1E+06 1.99 Instability 

1 3.218 0.5573 0.758 754619 1E+06 2.02 Instability 

In Iapetus-Sub-Satellite system,  

Roche’s Limit=aRoche_SS=2.43 RIap(ρIap/ρSS)1/3=2.495 RIap taking ρSS=1000 Kg/m and ρIap=1083 
Kg/m3. 

Inspection of the Table C.2 and Table C.3 show that for mass ratios q=0.0001 to 0.006, inner 
Clarke’s Orbit (aG1)=asynSS and aG1>(RIa+RSS). This means that SS has formed by normal core-accretion 
process. Since aG1>aRoche_SS hence SS is formed at aG1 and launched on super-synchronous orbit. 

From q=0.007 to 0.2, aG1>(RIa+RSS) hence core accretion process is the legitimate pathway for the 
formation of SS but in each of these cases asynSS>aG1 and asynSS>aRoche_SShence SS in these cases are 
doomed to death spiral right from the beginning. This means SS in this region q=0.007 to 0.2 donot 
contribute to de-spinning and they in most cases contribute to a recent equatorial ridge. 

Whereas for mass ratios 0.21 to 1.0, inner Clarke’s Orbit (aG1) is much less than asynSS and 
aG1<(RIa+RSS). This means the binary components have been formed by hydro-dynamic instability. 



 
 

Roche’s limit criteria does not apply. In the whole range from q=0.21 to q=1.0 there is no 
evolutionary history. By hydrodynamic instability the two components are formed and they, on a 
time scale of months/years acquire the stable configuration corresponding to the outer Clarke’s orbit 
as is the case in Pulsar-Star, Brown-Dwarf pair or Star +Brown-Dwarf pair. The spin of the 
primary=the spin of the secondary=the orbital period of the binary are at a steady state value There 
is neither de-spinning nor spin-up. 

 So we can divide the mass ratio q=0.0001 to 1.0 in three zones: 
• From q=1.0 to 0.21 is the zone where SS gets locked at outer Clarke’s Orbit instantaneously. The outer Clarke’s 

Orbit is at=3.88RIap for q=1.0 which corresponds to 17.2 hours. The outer Clarke’s Orbit is at 3.2RIap for q=0.3 
which corresponds to 15.95 hours. At q=0.3, ‘Iapetus+SS’ immediately assume a stable configuration with 
orbital period of SS=spin period of SS=spin period of Iapetus~16 hours.  

• From q=0.2 to 0.007, the SS gets trapped in death spiral right from the beginning. In this zone SS is destined to 
spiral-in and impact Iapetus. It does not contribute to de-spinning and does not contribute ancient ridge in 
most cases; 

• From q=0.007 to 0.0001 is the third zone where SS may significantly de-spin Iapetus and eventually be captured 
by Saturn. 

C.2. An estimate of the different time-scales of evolution of the Sub-Satellite for the given 
range of q=0.0001 to 1.0 

In KM formulation following is the definition of evolution factor and time constant of evolution: 

∈ (𝑟𝑟𝑒𝑒𝑜𝑜𝑒𝑒𝑟𝑟𝐼𝐼𝑒𝑒𝑜𝑜𝑎𝑎 𝑜𝑜𝑚𝑚𝑟𝑟𝐼𝐼𝑜𝑜𝑟𝑟) =  
𝑚𝑚𝑠𝑠𝑜𝑜𝑒𝑒𝑠𝑠𝑒𝑒𝑀𝑀𝑏𝑏 − 𝑚𝑚𝐺𝐺1
𝑚𝑚𝐺𝐺2 − 𝑚𝑚𝐺𝐺1

                                              C. 4 

𝜏𝜏(𝐼𝐼𝑒𝑒𝑚𝑚𝑟𝑟 𝑟𝑟𝑜𝑜𝑎𝑎𝑚𝑚𝐼𝐼𝑚𝑚𝑎𝑎𝐼𝐼 𝑜𝑜𝑜𝑜 𝑟𝑟𝑒𝑒𝑜𝑜𝑒𝑒𝑟𝑟𝐼𝐼𝑒𝑒𝑜𝑜𝑎𝑎) =
𝑚𝑚𝐺𝐺2 − 𝑚𝑚𝐺𝐺1
𝑉𝑉𝑚𝑚𝑏𝑏𝑚𝑚

                                     C. 5 

These two parameters are dependent on the mass ratio q where q is: 

𝑞𝑞(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑚𝑚𝐼𝐼𝑒𝑒𝑜𝑜) =
𝑀𝑀𝑠𝑠𝑒𝑒𝑅𝑅𝑅𝑅𝑀𝑀𝑠𝑠𝑏𝑏𝑜𝑜𝑠𝑠

𝑀𝑀𝑠𝑠𝑜𝑜𝑏𝑏𝑚𝑚𝑏𝑏𝑜𝑜𝑠𝑠
                                                                C. 6 

Table C.4 give these parameters of binary pairs studied by us. By inspection of Table C.4 it is seen 
that greater is q, shorter is the time scale of evolution from aG1 to aG2 and subsequently there is rapid 
evolution of the system. 

Table C.4: The mass ratio(q), evolution factor(€) and time constant of evolution (τ) of some 
selected binary systems in ascending order of q. 

Binary Pair q € τ Reference 

Deimos+Mars 2.8×10-6 1.66×10-14 2.7×1020y Sharma et al. 

Iapetus+Saturn 3.16×10-6 2.17×10-8 1.074×1016y Present paper 

Phobos+Mars 1.17×10-5 Death spiral 1.29×1019y Sharma et al. 

HD49674A+b 1.07×10-4 Death spiral 3.4Gy Sharma 



 
 

HD52265A+b 8.5×10-4 0.394 2.42Gy Sharma 

HD147513A+b 9.6×10-4 0.386 47.56My Sharma 

HD196050A+b 2.62×10-3 0.866 5.65My Sharma 

HD111232A+b 8.33×10-3 0.9827 1.63My Sharma 

Earth+Moon 0.012 0.687 313My Sharma et al. 

Pluto+Charon 0.125 1 37My Sharma et al. 

2M1207BD+BD 0.2 1 6 hours Sharma 

HD196885A+BD 0.2524 1 179y Sharma 

2M0535BD+BD 0.62 1 19197y Sharma 

GL86A+BD 0.784 1 20.9y Sharma 

From the studies of natural satellites such as Earth-Moon and Pluto-Charon, I make a following 
estimate of the scale of evolution of SS as given in the Table C.5. 

Table C.5: Estimated transit time of Sub-Satellite for achieving an evolution factor of €=0.7 by 
scaling the time constant and transit time of Earth-Moon system. 

q Estimated Time Constant Estimated transit time for reaching an evolution factor €=0.7 

0.0001 10Gy 147Gy 

0.001 1Gy 14.7Gy 

0.006 800My 11Gy 

0.009 500My 7.185Gy 

0.012 313My 4.5Gy (this is the case of Earth-Moon) 

0.021 200My 2.874Gy 

0.03 100My 1.47Gy 

0.04 90My 1.3Gy 

0.1 31My 450My 

0.125 24.8My 360My (this is the case of Charon-Pluto) 



 
 

0.5 0 0 

0.8 0 0 

Using these transit time estimates, I derive and plot SS semi-major axis expansion with time for 
the whole range of q. 

C.3. An estimate of the time-scale of evolution of the Sub-Satellite for the range of q=1.0 to 0.3 
specifically at q=0.4. 

Let us consider the case q=0.4. This is the case of hydro-dynamic instability. Hence after the 
impact almost abruptly, Iapetus-SS pair is formed in stable equilibrium configuration at outer 
Clarke’s Orbit with orbital period of SS=spin period of SS=spin period of Iapetus~16 hours with zero 
time scale. Almost instantaneously Iapetus is de-spun from 13 hours to 16 hours and, in few hundred 
years because of high thermal conductivity, 16 hours hydro-static equilibrium ellipsoidal shape is 
frozen for the posterity. Subsequently because of de-spinning of Iapetus by Saturn, Sub-satellite’s 
Synchronous Orbit expansion sweeps past the contemporary orbit of SS at 1.68My and SS as abruptly 
spirals-in and impacts into Iapetus leaving an equatorial ridge. This could be as ancient as seen today 
by Cassini Mission. This scenario is quite plausible and the remaining de-spinning is done by Saturn. 

 
Figure C.1: Abrupt setting up of SS_q=0.4 in outer Clarke’s Orbit at 3.3RIap and equally abrupt 

collapse of SS_q=0.4 orbit by spiral-in and impacting Iapetus. This spiral-in takes place due to 
expansion of sync-orbit of SS and becoming larger than 3.3RIap at 1.68My. 

C.4. An estimate of the time-scale of evolution of the Sub-Satellite for the range of q=0.29 to 
0.007 specifically at q=0.04 

Case i: This is the classical core-accretion process by which the Sub-Satellite has been formed. At 
q=0.04, the constants of equation (ω/Ω) are: 



 
 

E=6.2673906 × 10-10 m-1.5 and F =17.768 × 10-14 m-2. 

From the (ω/Ω) equation, the two Clarke’s orbits are: 

Inner Clarke’s Orbit=aG1=2.58RIap=1.90002 × 106 m which corresponds to 13 hours orbital period. 

Outer Clarke’s Orbit=aG2=15.55RIap=11.4368 × 106 m which corresponds to 191 hours=7.96 days 
orbital period. The MMR (2:1) is at a2=3.64338 × 106 m. 

The synchronous orbit ‘async’ (2.59RIap)>‘aG1=2.58RIap’ therefore right from the beginning SS at 
q=0.04 is doomed to be trapped in a death spiral and make an impact at 726.4My after the debris 
generating impact. This SS impact will create an equatorial ridge but not an ancient one. Still this case 
will be analyzed as if SS is in super-synchronous orbit. 

From Table C.5, the time constant of evolution=90My and the time taken to achieve (evolution 
factor) €=0.7 is 1.1Gy. Within these boundary conditions Structural Constant ‘K’ and structural 
exponent ‘M’ are determined. 

At €=0.7, the semi-major axis is 8.575766 × 106 m. Hence SS must take 1.3Gy to spiral out to a 
semi-major axis of 8.575766 × 106 m. In our case SS is able to achieve evolution factor of 0.7 in 1.1Gy. 

Using these boundary conditions and vmax=0.008m/yr, we get: ‘M’=2.32072 and ‘K’=2.7431 × 
1027. 

 
Figure C.2: Evolution of ω/Ω=LOM/LOD of SS_q=0.04 with respect to the expanding spiral orbit 

of SS. At aG1=1.9 × 106 m and at aG2=11.44 × 106 m, LOM/LOD=1 and orbital period=spin of SS=spin of 
Iapetus. At 7 × 106 m, LOM/LOD has the maximum value of 2.9. 



 
 

 
Figure C.3: The evolution of Radial Velocity as SS_q=0.04 spirals out from inner Clarke’s Orbit 

(1.9 × 106 m) to outer Clarke’s Orbit (11.44 × 106 m). The maximum radial velocity is 0.008 m/yr at 
a2=3.64338 × 106 m. This is the point where ω/Ω=2. This is also the point where the impulsive 
gravitational sling-shot torque ends and SS coasts on its own along an expanding spiral path.  

This scenario is ruled out. This gives a much larger non-hydrostatic equilibrium anomaly. It does 
not help in de-spinning because SS is caught in sub-synchronous orbit and the SS will spiral-in and 
impact Iapetus causing it to spin up and the SS impact produces a recent equatorial ridge which is as 
recent as (4500M-726.4M=) 3.773Gy old. 

Case ii: Consider q=0.1. Here the formation is through core accretion process hence it has an 
evolutionary history. 

At q=0.1, the constants of equation (ω/Ω) are: 

E=9.6278003 × 10-10m-1.5 and F=41.998 × 10-14 m-2. 

From the (ω/Ω) equation, the two Clarke’s orbits are: 

Inner Clarke’s Orbit=aG1=2.56RIap=1.88649 × 106 m which corresponds to 12.44 hours orbital 
period. 

Outer Clarke’s Orbit =aG2=5.38RIap=3.96229 × 106m which corresponds to 37.87 hours=1.57 days 
orbital period. Here at ω/Ω=2, we get complex roots therefore we assume that vmax occurs at 
ω/Ω=1.15. The MMR (1.15:1) is at a2=2.35394 × 106 m. 

Here also ‘async’=2.64RIap > ‘aG1’=2.56RIap therefore SS at q=0.1 is doomed to be trapped in death 
spiral and impact SS in 176My. This creates an equatorial ridge as ancient as 4.3Gy old still for 
complete physical understanding this case will be analyzed keeping SS in super-synchronous orbit.  



 
 

The time constant of evolution=31My and the time taken to achieve (evolution factor) €=0.7 is 
365My. Within these boundary conditions Structural Constant ‘K’ and Structural Exponent ‘M’ are 
determined. 

At €=0.7, the semi-major axis is 3.33955 × 106 m. Hence SS must take 365My to spiral out to a 
semi-major axis of 3.33955 × 106 m. 

Using these boundary conditions and vmax=0.01m/yr, ‘M’=4.24294 and  

‘K’ =4.44 × 1040. 

In Table C.6. the time evolution of SS_q=0.1 semi-major axis is given. 

Table C.6: The time evolution of SS_q=0.1 semi-major axis. 

Time after formation(yrs) Semi-major axis (a) mof SS_q=0.1 a (×RIap) 

0 1.886 × 106 2.564 

130.6 M 1.9 × 106 2.58 

158.05 M 1.95 × 106 2.65 

169.7 M 2.0 × 106 2.71 

184.7 M 2.1 × 106 2.85 

196.2 M 2.2 × 106 2.99 

206.5 M 2.3 × 106 3.13 

216.5 M 2.4 × 106 3.26 

226.7 M 2.5 × 106 3.40 

237.4 M 2.6 × 106 3.53 

248.9 M 2.7 × 106 3.67 

261.4 M 2.8 × 106 3.81 

275.3 M 2.9 × 106 3.94 

290.9 M 3.0 × 106 4.08 

308.8 M 3.1 × 106 4.21 

329.6 M 3.2 × 106 4.35 

354.1 M 3.3 × 106 4.49 



 
 

383.8 M 3.4 × 106 4.62 

420.7 M 3.5 × 106 4.76 

468.5 M 3.6 × 106 4.89 

534.4 M 3.7 × 106 5.03 

636.7 M 3.8 × 106 5.17 

849.6 M 3.9 × 106 5.30 

889.3 M 3.91 × 106 5.32 

937.6 M 3.92 × 106 5.33 

999.3 M 3.93 × 106 5.34 

1.08 G  3.94 × 106 5.36 

1.22 G 3.95 × 106 5.37 

1.61 G 3.96 × 106 5.38 

3.45 G 3.96229 × 106 5.39 



 
 

 
Figure C.4: The evolution of SS_q=0.1 semi-major axis in a collapsing spiral orbit. 

As we see in Figure C.4, asyncSS=2.64RIap for q=0.1 whereas the launching point aG1 of SS for q=0.1 
is 2.56RIap hence SS is doomed to death spiral right from the beginning. In fact if we look at Table C.2, 
only for q=0.0001 to 0.006 we have async=aG1. Hence only in these cases SS can be launched in super-
synchronous orbit and thereby play a role in de-spinning the Iapetus-SS system. 

From q=0.007 to 0.2, in every case asyncSS>aG1 and SS in all these cases is launched on sub-
synchronous orbit where it spins-up the system. 

From q=0.3 to 1, SS abruptly goes to approximately 4RIap orbit so it equally abruptly de-spins 
Iapetus from 13 hours to 16 hours. In few hundred years Iapetus is frozen to preserve 16 hours non-
hydrostatic equilibrium anomaly to this day. 

From this discussion it is clear the scenarios involving q=0.007 to 0.2 are ruled out as they donot 
help in de-spinning. 

 For the case q=0.1, if the time integral equation is solved for death spiral then we see that the 
impact time is 176My after SS is formed. This makes the equatorial ridge 4.325 Gy ancient. For q<0.1, 
the ridge will be still younger which does not concur with the observations of Cassini Mission. 

Hence from KM point of view, q=0.2 to 0.007 SS is completely ruled out. Next we will examine 
q=0.006. 



 
 

C.5. An estimate of the time-scale of evolution of the Sub-Satellite for the range of q=0.006 to 
0.0001. 

Case i: q=0.006 

This is the classical core-accretion process by which the Sub-Satellite has been formed. At 
q=0.006, the constants of equation (ω/Ω) are: 

E=4.2404446 × 10-10 m-1.5, F=2.75534 × 10-14 m-2, B=347612.8 m3/2/s. 

From the (ω/Ω) equation, the two Clarke’s orbits are: 

Inner Clarke’s Orbit=aG1=2.563RIap=1.88561 × 106 m which corresponds to 13 hours orbital 
period. 

Outer Clarke’s Orbit=aG2=321.55RIap=236.542 × 106 m which corresponds to 18266 hours=761 
days orbital period. The MMR (2:1) is at a2=3.0455082 × 106 m. 

Here ‘asyncSS’=2.563RIap=aG1=2.563RIap so here SS may be placed in super-synchronous orbit 
therefore this is a suitable case for studying from de-spinning point of view. 

From Table C.5, the time constant of evolution=800My and the time taken to achieve (evolution 
factor) €=0.7 is 11Gy. Within these boundary conditions Structural Constant ‘K’ and Structural 
Exponent ‘M’ are determined. 

At €=0.7, the semi-major axis is 166.145 × 106 m. Hence SS must take 11Gy to spiral out to a semi-
major axis of 166.145 × 106 m. 

Using these boundary conditions and vmax=2.5 m/yr, ‘M’=3.37206 and ‘K’=6.19396× 1035. Using 
these kinematic parameters the transit time to achieve 0.7 evolution factor is 11.2Gy. 

In Table C.7. the time evolution of SS_q=0.006 semi-major axis is given. 

Table C.7: The time evolution of SS_q=0.006 semi-major axis. 

Time after formation(yrs) Semi-major axis (a)m of SS_q=0.006 a (×RIap) 

0 1.885419.7 × 106 2.563 

602644 2.20689 × 106 3 

2.62 M 2.94252 × 106 4 

2.71 M 3.678150 × 106 5 

3.24 M 4.413780 × 106 6 

3.45 M 5.14941 × 106 7 

3.66 M 5.885040 × 106 8 

3.87 M 6.620670 × 106 9 



 
 

5.47 M 7.3563 × 106 10 

6.66 M 8.82756 × 106 12 

7.85 M 10.29882 × 106 14 

10.4 M 11.770080 × 106 16 

13.14 M 13.241340 × 106 18 

16.11 M 14.7126 × 106 20 

23.4 M  17.655120 × 106 24 

32.56 M 20.59764 × 106 28 

43.99 M 23.540160 × 106 32 

77.9 M 29.4252 × 106 40 

119.33 M 35.31024 × 106 48 

173.07 M 41.19528 × 106 56 

252.11 M 47.08032 × 106 64 

316.84 M 51.4941 × 106 70 



 
 

 
Figure C.5: Evolution of semi-major axis of SS_q=0.006. At 16.11My SS gets stripped off from 

Iapetus Hill Sphere and just manages to de-spin Iapetus from 13 hours to 15.77 hours. 

From Figure C.5. it is evident that SS is in super-synchronous orbit. At 16.11My, SS is stripped off 
from Iapetus Hill Sphere. At 16.11My after the debris generating impact, SS orbital period itself de-
spins from 13 hours to 283 hours because it has spiraled out from an orbit of semi-major axis 
aG1=1.88561 × 106 m to astrip=14.7126 × 106 m. The ratio (ω/Ω) has a value 17.9659 at astrip=14.7126 
× 106 m therefore spin period of Iapetus at point of stripping is only 15.77 hours. There is 
insignificant de-spinning and according to this scenario the non-hydrostatic equilibrium anomaly 
should be much larger corresponding to 13 hours whereas it is corresponding to 16 hours. Therefore 
this scenario is completely rejected. 

Case ii: q=0.0001 

This is the classical core-accretion process by which the Sub-Satellite has been formed. At 
q=0.0001, the constants of equation (ω/Ω) are: 

E=3.8799531 × 10-10 m-1.5, F=0.046193 × 10-14 m-2, B=346592 m3/2/s. 

From the (ω/Ω) equation, the two Clarke’s orbits are: 

Inner Clarke’s Orbit=aG1=2.558RIap=1.88187 × 106 m which corresponds to 13 hours orbital 
period. 

Outer Clarke’s Orbit =aG2 =959050RIap=705506 × 106 m which corresponds to 2.98 × 109 
hours=124.17 × 106 days orbital period. The MMR (2:1) is at a2=2.98813 × 106 m. 

Here ‘async’=2.558RIap=aG1=2.558RIap so here SS may be placed in super-synchronous orbit and it 
is a suitable case for studying from de-spinning point of view. 



 
 

From Table C.5, the time constant of evolution=10Gy and the time taken to achieve (evolution 
factor) €=0.7 is 147Gy. Within these boundary conditions Structural Constant ‘K’ and Structural 
Exponent ‘M’ are determined. 

At €=0.7, the semi-major axis is 4.93855 × 1011 m. Hence SS must take 147Gy to spiral out to a 
semi-major axis of 4.93855 × 1011 m. 

Using these boundary conditions and vmax=160,000,000 m/yr=1.6 × 108 m/yr, ‘M’=3.49794 and 
‘K’=4.09153 × 1042. Using these kinematic parameters the transit time to achieve 0.7 evolution factor 
is 152Gy. 

In Table C.8. the time evolution of SS_q=0.0001 semi-major axis is given. 

Table C.8: The Time Evolution of SS_q=0.0001 semi-major axis. 

Time after formation(yrs) Semi-major axis (a) m of SS_q=1 × 10-4  a (×RIap) 

0 1.8854197 × 106 2.563 

0.0237 2.20689 × 106 3 

0.0289 2.94252 × 106 4 

0.0336 3.678150 × 106 5 

0.0389 4.413780 × 106 6 

0.045 5.14941 × 106 7 

0.052 5.885040 × 106 8 

0.061 6.620670 × 106 9 

0.070 7.3563 × 106 10 

0.093 8.82756 × 106 12 

0.122 10.29882 × 106 14 

0.157 11.770080 × 106 16 

0.199 13.241340 × 106 18 

0.247 14.7126 × 106 20 

As seen in Table C.8, at orbital radius of 20RIap=14.7126 × 106 m, the orbital period of SS is 284.2 
hours. The ratio (ω/Ω) at this radius is 17.96 therefore the spin period of Iaptus is 15.82 hours. This 
happens in 0.247 year. That is almost instantly Iapetus is de-spun from 13 hours to 16 hours and SS 
gets stripped off Iapetus Hill Sphere. From this point onward Iapetus is de-spun by Saturn. 



 
 

If there was no SS then Saturn-Iapetus System would have taken 1.68My to de-spin from 13 hours 
to 16 hours confronting us with the problem of justifying non-hydrostatic equilibrium anomaly 
corresponding to 16 hours. 

So this scenario is acceptable.  
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